
www.manaraa.com

University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2017

Using Natural Language Processing and Machine Learning Using Natural Language Processing and Machine Learning

Techniques to Characterize Configuration Bug Reports: A Study Techniques to Characterize Configuration Bug Reports: A Study

Wei Wen
University of Kentucky, wwen0@uky.edu
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.047

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Wen, Wei, "Using Natural Language Processing and Machine Learning Techniques to Characterize
Configuration Bug Reports: A Study" (2017). Theses and Dissertations--Computer Science. 55.
https://uknowledge.uky.edu/cs_etds/55

This Master's Thesis is brought to you for free and open access by the Computer Science at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

www.manaraa.com

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Wei Wen, Student

Dr. Jane Hayes, Major Professor

Dr. Miroslaw Truszczynski, Director of Graduate Studies

www.manaraa.com

USING NATURAL LANGUAGE PROCESSING AND MACHINE
LEARNING TECHNIQUES TO CHARACTERIZE CONFIGURATION

BUG REPORTS:

A STUDY

THESIS

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science in the

College of Engineering

at the University of Kentucky

By

Wei Wen

Lexington, Kentucky

Director: Dr. Jane Hayes, Professor of Computer Science

Co-Director: Dr. Tingting Yu, Assistant Professor of Computer Science

Lexington, Kentucky

 2017

Copyright © Wei Wen, 2017

www.manaraa.com

ABSTRACT OF THESIS

USING NATURAL LANGUAGE PROCESSING AND MACHINE
LEARNING TECHNIQUES TO CHARACTERIZE CONFIGURATION

BUG REPORTS: A STUDY

In this study, a tool is developed that achieves two purposes: (1) given bug
reports, it identifies configuration bug reports from non-configuration bug reports; (2)
once a bug report is identified to be a configuration bug report, the tool finds out what
specific configuration option the bug report is associated.

This study starts with a review of related works that used machine learning tools
to solve software bug and bug report related issues. It then discusses the natural language
processing and machine learning techniques. Afterwards, the development process of the
proposed tool is described in detail, including the motivation, the experiment design and
setup, and results analysis. In order to evaluate the effectiveness of the tool, both cross-
validation and a similar validation technique are performed. Results show that the tool is
effective at both identifying configuration bug reports and the associated configuration
options for the identified bug reports.

This study proves the usefulness of machine learning techniques in solving bug
report related issues. It also shows that configuration and non-configuration bug reports
have different characteristics that can be learned by machine learning tools. The
developed tool can be improved in a number of areas to make it more effective.

KEYWORDS: Configuration Bug Reports, Natural Language Processing, Machine
Learning, Weka, NLTK, Scikit-Learn

 _____________Wen Wei__________________
 Student’s Signature

 ____________01 / 30 / 2017_______________
 Date

www.manaraa.com

USING NATURAL LANGUAGE PROCESSING AND MACHINE
LEARNING TECHNIQUES TO CHARACTERIZE CONFIGURATION

BUG REPORTS: A STUDY

By

Wei Wen

____________Jane Hayes___________
Director of Thesis

___________Tingting Yu___________

Co-Director of Thesis

_______Miroslaw Truszczynski______
Director of Graduate Studies

___________01 / 30 / 2017__________

Date

www.manaraa.com

iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my advisors Dr. Jane Hayes and Dr.

Tingting Yu for their guidance, insightful discussions, encouragement and support during

my work on the Thesis. Their knowledge and experience in my field of study were very

invaluable to me.

I would also like to thank Dr. Fuhua Cheng for taking time from his busy

schedule to review the Thesis and serve as my committee member.

Lastly but not least, I would like to express my deep gratitude for my husband,

Jinsong Chen, for his love, encouragement and eternal support.

www.manaraa.com

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. 3

TABLE OF CONTENTS ... iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER 1 ... 1

Introduction ... 1

CHAPTER 2 ... 4

Background and Related Work ... 4

2.1 Software Bugs, Bug Reports and Related Research ... 4

2.1.1 Software Bugs and Bug Reports .. 4

2.1.2 Related Work ... 5

2.1.3 Contributions of This Research ... 7

2.2 Natural Language Processing ... 9

2.2.1. Tokenization, Lemmatization and Stopwords .. 9

2.2.2. Feature Extraction ... 10

2.3 Machine Learning and Its Tools ... 11

2.3.1. Classifiers in Machine Learning ... 12

2.3.2. Machine Learning Tools ... 16

2.3.3. Performance Evaluation Metrics for Classification .. 19

2.3.4. Common Practices in machine learning ... 20

Chapter 3 ... 24

Predicting Configuration Bug Reports and Extracting Configuration Options 24

3.1 Motivation of the Study .. 24

3.2. Experiment Design and Setup .. 26

3.2.1. Experiment Design.. 27

3.2.2. Experiment Setup .. 35

3.3. Results and Analyses ... 39

3.3.1 Classification of Bug Reports into Configuration and Non-configuration

Related .. 40

www.manaraa.com

v

3.3.2 Identification of a configuration associated with a configuration bug report .. 53

Chapter 4 ... 56

Conclusions and Future Work .. 56

4.1 Conclusions ... 56

4.2 Future Work .. 57

Appendix ... 60

References ... 75

VITA ... 82

www.manaraa.com

vi

LIST OF TABLES

Table 1. Apache 10 times 10-fold CV using NLTK classifiers .. 41

Table 2. Apache 20 times 5-fold training and testing using NLTK classifiers 41

Table 3. Apache 10 times 10-fold CV using Sklearn classifiers 42

Table 4. Apache 20 times 5-fold training and testing using Sklearn classifiers 42

Table 5. Apache 10 times 10-fold CV using Weka classifiers ... 44

Table 6. Mozilla 10 times 10-fold CV using NLTK classifiers .. 44

Table 7. Mozilla 20 times 5-fold training and testing using NLTK classifiers 45

Table 8. Mozilla 10 times 10-fold CV using Sklearn classifiers 45

Table 9. Mozilla 20 times 5-fold training and testing using Sklearn classifiers 46

Table 10. Mozilla 10 times 10-fold CV using Weka classifiers 46

Table 11. MySQL10 times 10-fold CV using NLTK classifiers 47

Table 12. MySQL 20 times 5-fold training and testing using NLTK classifiers 47

Table 13. MySQL 10 times 10-fold CV using Sklearn classifiers 47

Table 14. MySQL 20 times 5-fold training and testing using Sklearn classifiers 48

Table 15. MySQL 10 times 10-fold CV using Weka classifiers 48

Table 16. Some Most Informative Words In Mozilla, Apache And MySQL Bug Reports

That Are Used By Classifiers ... 50

Table 17. Average configuration and non-configuration F-measures of the five classifiers

... 52

Table 18. Ranking terms in the example configuration option ... 55

Table 19. Accuracy of relating a configuration bug report with a configuration 55

www.manaraa.com

vii

LIST OF FIGURES

Figure 1. A sketch of 10-fold cross-validation. .. 21

Figure 2. A configuration bug report. ... 25

Figure 3. The Process flow of bug reports classification and configuration identification.

... 27

Figure 4. Bug reports classification process. .. 28

Figure 5. Configuration identification of a configuration bug report. 33

Figure 6. Some configurations in the three open source projects. 34

Figure 7. Q-Q plots of the Mozilla configuration F-measure classified using NLTK Naïve

Bayes using HIW. ... 38

Figure 8. F-test on the variance and T-test on the mean of configuration F-measure of

Apache 10 times 10-fold CV using NLTK Naïve Bayes. ... 39

Figure 9. The first few most informative features identified by NLTK NaiveBayes in

Mozilla bug reports. .. 51

www.manaraa.com

1

CHAPTER 1

Introduction

As software technology advances, software products become more and more

complex, and correspondingly maintenance is becoming more expensive and challenging.

Maintenance costs account for more than two thirds of the life cycle costs of software

products [1]. Essential maintenance activities include bug reporting and bug fixing. In

order to facilitate bug maintenance, organizations use bug-tracking systems for users to

submit bug reports, and for developers to collect bug information in order to fix bugs.

Bug fixing involves both analyzing bug reports and modifying code to fix the bugs.

Analyzing bug reports can be tedious and time-consuming, since bug reports can be

lengthy and the description can be hard to understand. However, analysis is a very crucial

step for developers to move closer to bug fixing. Thus, making this step efficient and

effective can greatly reduce the maintenance cost.

Meanwhile, software engineering has advanced so much that nowadays medium

to large software systems generally have many configuration options for users to

customize in order to meet their needs. For example, users can augment their Mozilla

browsers with sophisticated add-ins, change their Eclipse build settings (i.e.,

configuration options) to use different versions of the JDK or specified libraries

depending on the project, build a specific Linux kernel configuration, etc. While such

customizability provides benefit to users, the complexity of the configuration space and

the sophisticated constraints among configuration settings complicates the process of

testing and debugging. Thus, it is not surprising that many configuration bugs remain

www.manaraa.com

2

undetected and later surface in the field. A study by Yin et al. [2] shows that up to 31% of

bugs are related to misconfiguations in several open source and commercial software

systems [2], where a majority of misconfigurations (up to 85.5%) are due to mistakes in

setting configuration options.

A developer who is assigned to a given bug report first needs to determine the

type of the bug, i.e., whether this bug is configuration-related or not. The next step is to

use the anomalous configuration options to reproduce the bug. However, developers with

insufficient domain knowledge may incorrectly label a bug report or spend time

determining the bug type (time that could have been well spent elsewhere). In addition, to

understand the bug, developers often need to look through the bug descriptions, which

can be lengthy, verbose, and involve multiple developers and users. In fact, Rastkar et al.

found that almost one third of the bug reports in the open source projects Firefox,

Thunderbird, and Eclipse Platform in the 2011-2012 period were 300 words or longer

(deemed lengthy) [3].

Furthermore, it is often non-trivial to determine which configuration options are

relevant in order to reproduce a bug. For example, if a developer knows that a bug report

describes a configuration bug related to javascript in a browser application, he/she may

not be able to quickly determine what the real name of the configuration option is in the

configuration database (e.g., Browser.urlbar.filter.javascript). If the developer wants to

fix this bug, he/she may spend an exorbitant amount of time searching through the

configuration database to find which option is relevant.

www.manaraa.com

3

Therefore, there is a need for an effective technique to reduce the manual effort

required to label configuration bug reports and to identify the root cause configuration

options. This need inspired many researchers to study bug reports to find out useful bug

information in order to localize and fix the bugs. With the increasing popularity of

machine learning and its successful use in many applications, studying bug reports using

machine learning techniques has also gained popularity and proven effective.

In this study, a framework is developed that aims to improve configuration-aware

techniques and help ease developers’ process of debugging and reproducing bugs that

need specific configurations for exposition. It focuses on configuration bugs due to

incorrect settings of configuration options. Given a bug report, it determines whether it is

a configuration bug, and if it is, the approach suggests configuration options to help

developers reproduce the bug. It provides at least two benefits. First, developers can label

configuration bug reports in an automated and timely manner. Second, with the

configuration query component, it allows developers to approximate configuration

options that are relevant to the bugs. This can improve the configuration debugging and

diagnosis process.

www.manaraa.com

4

CHAPTER 2

Background and Related Work

This chapter presents the background knowledge in terms of software bugs, bug

reports, natural language processing and machine learning, and discusses related work

that used either or both natural language processing and machine learning to study

software bugs and/or bug reports.

2.1 Software Bugs, Bug Reports and Related Research

This section gives brief definitions of software bugs and bug reports, and stresses

the importance of studying them in order to put the ever-increasing software bugs under

control. It also discusses related research activities at both the software bugs level and the

bug reports level, and compares them with this research work.

2.1.1 Software Bugs and Bug Reports

A software bug is an error, flaw, failure, or fault in a computer program that

causes the program to produce incorrect results, or to behave in an unintended way, even

crash. As discussed in Chapter 1, software bugs are prevalent, and with the increasing

number and complexity of software systems, both the amount and the types of bugs are

growing too. Tremendous effort has been put into classifying bug reports, identifying and

fixing bugs, as can be seen by the large volume of papers devoted to software bug/bug

report research [4-15].

Software bug reports are plain text that can contain the error log, the steps to

reproduce the bug, and the product, version, platform, and operating system information.

To help track the progress of a bug report, it may be labeled as new, confirmed,

www.manaraa.com

5

duplicated, fixed, closed, etc. A good bug report should be specific about the problem,

and provide information that is as comprehensive as possible. However, there is no

effective way to prevent bug reporters from writing free flowing, long bug reports with

much extraneous information. Thus, having a tool that can extract useful information

from these kinds of bug reports will be very useful.

2.1.2 Related Work

With the prevalence of software bugs, it is not surprising that there is much

related research work. Researchers have been approaching the problems both from the

code level and from the bug report level. On both levels, using machine learning

techniques has become a common practice.

On the bug report level, researchers have been performing a lot of analyses on

bug reports for all kinds of purposes. Dommati et al. [4] used machine learning tools to

help identify duplicate bug reports so that less time is needed to classify the bug reports.

Wang et al. [5] also studied duplicate bug reports. They used natural language and

execution information to help detect duplicate reports. When a new bug report arrives, its

natural language information is compared with existing ones, and the most similar

existing bug reports are presented to the person in charge of marking a bug report as

duplicate. Padberg and Pfaffe [6] studied the classification of concurrency bug reports on

MySQL and Apache by applying keyword search and machine learning. For

classification, they used a linear classifier and a neural network classifier and obtained

encouraging results. Kim and Kim [7] proposed a two-phase prediction model that used

information from bug reports to suggest the locations of the software that are likely to

need fixing. They used the bag of words approach in NLP to extract word tokens from

www.manaraa.com

6

bug reports to identify features, and then used the features in machine learning as input to

train classifiers or to predict which location of the software needs to be fixed. Gegick et

al. [8] applied text mining on bug reports to classify security bug reports. They trained

the machine learning model on already manually and correctly labeled bug reports, and

then used the trained model to identify security bug reports that were manually

mislabeled as security bug reports. Evaluation of their models on a large Cisco software

system showed moderately to high successful classification rates. Rastkar and Murphy [9]

compared a few text mining classifiers called Email Classifier, Email and Meeting

Classier, and their own Bug Report Corpus classifier based on which generates the most

accurate bug report summaries. This is very helpful to developers since bug reports can

be lengthy and loose; using classifiers that can generate concise and accurate summaries

greatly alleviate developers’ responsibilities. Sureka [10] studied bug reports by splitting

them into components such as product name, version number, etc. and used machine

learning tools to categorize bug reports into predefined lists of components and predict

whether a given bug report is likely to be reassigned. His result shows the presence of

correlation between terms in bug reports and components which can be exploited for the

task of predicting the correct component of a bug report. Matter et al. [11] proposed an

approach to automatically match and assign bug reports to the developers who have the

expertise to work on the bugs. They compared the vocabulary used by a developer in

his/her code with the vocabulary used in bug reports using a machine learning approach,

and depending on how similar the vocabularies are, they recommend to assign or not

assign a bug report to a developer.

www.manaraa.com

7

On the code level, there are also many research activities. Briand et al. [12]

applied machine learning techniques in identifying bugs in the code. They used C4.5

decision trees to identify various failure conditions based on information regarding the

test cases’ inputs and outputs. Their results showed improvement over their original

technique. Zimmermann et al. [13] used Eclipse for their study, mapped the defects in its

bug database to its source code locations, and built the bug data set and a description of

its contents. They used logistic regression to train and classify the likelihood of a

file/package as defect-prone. Lamkanf et al. [14] proposed a text mining approach to

predict the severity of a bug report. Evaluation of their approach on three open source

software products shows that using text mining for the prediction can achieve moderate

to high accuracy. Turhan et al. [15] also used a machine learning approach to mine source

code for locating and predicting software bugs. Compared to a non-machine learning,

rule-based model which requires inspection of 45% of the source code, their machine

learning-based model suggested that 70% of the defects could be detected by inspecting

only 3% of the code. This suggests that a machine learning approach is a more practical

and efficient way to identify bugs.

2.1.3 Contributions of This Research

Compared to the research activities discussed in 2.1.2, the current research is a

study of using machine learning techniques to mine useful information from bug reports.

Thus, it belongs to the first type of research activities. However, while the activities

discussed in 2.1.2 encompass many areas, such as the duplicate bug reports, the security

related bug reports, the concurrency bug reports, etc., this research is different in that it

studies configuration bug reports, identifies them from non-configuration bug reports,

www.manaraa.com

8

and finds the configuration options with which the bug reports are associated. It compares

how the different software packages, machine learning classifiers, as well as the feature

extraction techniques affect the learning outcomes. It takes into account the unique

characteristics of bug reports, that is, different bug reports can contain very different

words, and validates the classifiers’ performance using a technique similar to cross

validation. It does this by using only the training bug reports’ features for training, since

in reality if a trained classifier is used for testing, it will not be able to know the testing

bug reports beforehand. It compares the classifiers’ performances with using cross

validation and with using this technique, and finds that there is generally a small decrease

in performance using only the training bug reports for training. However, this is a more

realistic use of a classifier in classifying bug reports.

This research also utilizes the NLP techniques to extract configuration options

that are likely associated with a configuration bug report. It builds a corpus of

configurations. Each configuration is considered a document in the corpus. It processes a

configuration into a list of words by splitting the configuration according to the token

used to connect the words together. By using a configuration as a document rather than a

bug report, it greatly reduces the size of the corpus, and makes the configuration

identification process faster.

The two-step processes developed in this study, i.e., configuration bug report

identification and configuration option identification is very useful for a developer who is

assigned to work on the bug. Being able to find out that the bug described in the bug

report is configuration-related, and to further identify the associated configuration(s) will

greatly shorten the developer’s bug fixing time.

www.manaraa.com

9

2.2 Natural Language Processing

Natural Language Processing (NLP) [16] is a computer science field of study that

evolved from artificial intelligence and computational linguistics, among others. It

involves the understanding of human languages and thus enabling computers to derive

meaning from human or natural language input as well as to generate natural language

and to translate between different languages. In this study, NLP is used to process bug

reports, including the extraction of words, identification and removal of common and

unimportant words (stop words), word tokenization, and lemmatization/stemmerization.

Only after the proper NLP processing can we perform machine learning operations to

learn and predict the types of bugs described in bug reports. NLP is also used in this

study to identify the specific configuration(s) (the name of a configuration) associated

with a bug report.

2.2.1. Tokenization, Lemmatization and Stopwords

The basic steps involved in NLP are word/sentence tokenization [17], stopword

removal [18], stemming [19], part-of-speech tagging [20], lemmatization [21], and

chunking and chinking [22]. In this work, some of these steps are employed to convert

bug reports into a “bag of words” in preparation for machine learning.

Tokenization is the process of splitting paragraphs into sentences or splitting

sentences into words. Words are frequently used as features in machine learning,

specifically text mining. Thus, word tokenization is often necessary. After tokenization,

there are still many common words which do not convey much meaning and should be

removed. These are called stopwords, and they include words such as “the”, “this”, “a”,

“is”. Removing stopwords reduces the dimensionality of the features (words) in machine

www.manaraa.com

10

learning. Dimensionality of the features in this study is the number of words (features)

used in machine learning. Dimensionality reduction [23] reduces the time and storage

needed. It also improves the performance of the classifiers by removing multi-collinearity.

To further reduce the dimensionality, stemming or lemmatization is performed.

Stemming is the process of removing the ends of a derived word to hopefully get its root

form. However, because of its simplicity, the transformed token may not be a

linguistically correct word. Lemmatization, on the other hand, always returns the true

root form of a word. In order for lemmatization to work correctly, the original word has

to be tagged, which means that the word needs a tag to identify it as a noun, verb, or other

part of speech so that lemmatization can restore the word to its correct root form. Since

we use NLTK for this work, the stopwords are from NLTK's "corpus" package, and the

lemmatization is from NLTK's "stem.wordnet" module.

2.2.2. Feature Extraction

In text mining, feature extraction [24] generally means extracting words as

features from text. The steps discussed in section 2.2.1 are some of the essential ones to

extract features for machine learning. In this section, we only concentrate on two

additional techniques that will eliminate noisy features and reduce feature dimensionality,

i.e., information gain with chi-sq and bigram.

Information gain [25] is a measure of how common a word is in a particular class

(label) compared to how common it is in other classes (labels). In order to extract high

information features, information gain needs to be calculated for each word. Chi-sq [26]

can be used to score the commonness of a word in a class. The higher the score, the more

likely the word is to be associated with the class. For simplicity, assume that there are

www.manaraa.com

11

bug reports of two classes t1 and t2 (e.g., configuration vs. non-configuration in this

study). Let nii be the counts that the word (say w) in consideration occurs in bug reports

of class t1, nio be the counts that w occurs in reports of t2, noi be the counts of all words

except w that occur in reports of class t1, noo be the counts of all words except w that

occur in class t2, and nxx be the counts of all words that occur in reports of both types.

The Chi-sq score that shows how likely this word is associated with type t1 is calculated

as:

𝐶𝐶ℎ𝑖𝑖_𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑛𝑛𝑥𝑥𝑥𝑥 × (𝑛𝑛𝑖𝑖𝑖𝑖 × 𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑛𝑛𝑖𝑖𝑜𝑜 × 𝑛𝑛𝑜𝑜𝑖𝑖)2

(𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑖𝑖𝑜𝑜) × (𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑖𝑖𝑜𝑜) × (𝑛𝑛𝑖𝑖𝑜𝑜 + 𝑛𝑛𝑜𝑜𝑜𝑜) × (𝑛𝑛𝑖𝑖𝑜𝑜 + 𝑛𝑛𝑜𝑜𝑜𝑜)

The score that shows how likely w is associated with class t2 can be calculated

similarly.

Bigram [27] identifies two words that are likely to co-occur. For example, if a bug report

contains "not configuration," it indicates that this report is not related to configuration

bugs. If individual words are used as the only features, this report may be incorrectly

classified as configuration-related. Thus, including bigrams increases the chance of

correctly classifying bug reports. The likelihood of two words occurring together is

calculated using chi-sq. The only change is that now instead of the association between a

word and a label, the association is between two words.

2.3 Machine Learning and Its Tools

Machine learning [28] grew out of artificial intelligence, and is an

interdiscipline of computer science and statistics. It started from people’s quest to build a

system that can learn and improve from experience, and thus be used for all kinds of

www.manaraa.com

12

tasks. It has been used successfully in many fields, such as speech recognition, computer

vision, e-commerce, etc. Other fields, from biology to control theory, have also shown

increasing interest in how their systems can automatically adapt or optimize to their

environment. With the exponential increase in online data, machine learning is becoming

very popular to detect hidden patterns to support business success and to make users’

online experience easier and more enjoyable.

With the successful application of machine learning in many fields and the

pressing needs in software engineering to tackle the growing number of software bugs,

recently machine learning has been gaining immense popularity in bug prediction and

bug report classifications. This research takes advantage of the general usefulness of

machine learning in problem solving and the prevalence of configurations in software as

well as the need to put the ever increasing number of bugs under control. It utilizes

machine learning tools to identify configuration bug reports based on known or labeled

configuration/non-configuration bug reports. Although machine learning itself may be

utilized for different purposes, the next step after processing text data with NLP is often

to run machine learning tools on the processed data so that useful results can be extracted

from the data. In our study, we use machine learning to build classifiers from labeled bug

reports and use them to help identify a new bug report as configuration-related or non-

configuration-related.

2.3.1. Classifiers in Machine Learning

There are three types of machine learning: supervised machine learning [29],

unsupervised machine learning [30] and reinforcement learning [31]. In supervised

www.manaraa.com

13

learning, there are labeled examples for the system to learn. A learned classifier is then

constructed from the labeled examples, which are then used to label new inputs. In

unsupervised learning, there are no labels in the given input data. The systems are

supposed to detect patterns from the input data. Because of this, there is no obvious error

metric to use to evaluate the classifiers. Reinforcement learning is useful in learning how

to react given occasional reward or punishment signals. It finds uses in other disciplines

such as game theory and genetic algorithms. In this work, we focus on supervised

machine learning only.

There are many supervised machine learning algorithms (or classifiers) in use

today. Popular ones include Naïve Bayes [32], Decision Trees [33], and Logistic

Regression [34]. All these classifiers are generally used in natural language processing

and text mining. The Maximum Entropy Classifier [35] is also commonly used and is

provided in NLP. In addition to these classifiers, in order to establish a baseline classifier

with which to compare, the simplest classifier, i.e., ZeroR [36], is also in use.

2.3.1.1 ZeroR

During training, ZeroR ignores the features and relies only on the labels for

predicting. Although it does not have much predicting capability, it establishes the lowest

possible predictability that a classifier can have. It works by constructing a frequency

table for the labels in the training data and selects the most frequent values of the testing

data in predicting.

2.3.1.2 Naïve Bayes

Naïve Bayes classifier uses Bayes algorithm and is statistic-based. In order to find

the label (in our case, the configuration or non-configuration type of a bug report), it uses

www.manaraa.com

14

the Bayes rule to represent P(label|features) in terms of P(label) and P(features|label), as

shown below:

𝑃𝑃(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙|𝑓𝑓𝑠𝑠𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠) =
𝑃𝑃(𝑓𝑓𝑠𝑠𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠|𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙) × 𝑃𝑃(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙)

𝑃𝑃(𝑓𝑓𝑠𝑠𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠)

Features are the input to the machine learning classifier. For text mining, they can

be a bag of words, bigrams, or even trigrams. To simplify the classification work, the

classifier also makes a “naïve” assumption, i.e., all the features are independent of each

other. Thus, the above equation can be rewritten as:

𝑃𝑃(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙|𝑓𝑓𝑠𝑠𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠) =
𝑃𝑃(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙) × 𝑃𝑃(𝑓𝑓1|𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙) × … × 𝑃𝑃(𝑓𝑓𝑛𝑛|𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙)

𝑃𝑃(𝑓𝑓𝑠𝑠𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠)

Where f1, f2, … fn are each individual features.

Although the naïve assumption is never really true, the classification results of

Naïve Bayes can be quite good, as can be seen by the results shown in Tables 1, 3, 4 and

5 in 3.3.1).

2.3.1.3. Decision Tree

Decision tree is based on a tree structure, where the inner nodes represent the

decision nodes and the leaf nodes represent the labels assigned. The decision nodes

decide which branch to take based on the values of the features. Building up a decision

tree starts with selecting the right features for the decision nodes, and there are a few

choices in making this decision. The simplest method to pick a decision node is to

consider all the available features and see which one is most accurate in predicting the

training data’s label and then use that feature. This is not effective though. A better

www.manaraa.com

15

choice, and also the generally used one, is to measure how much more organized the

input becomes after being divided using a given feature. One method to achieve this is to

use entropy, which is the sum of the probability of each label times the log probability of

the same label. The feature that achieves the maximum entropy [37] is selected as a

decision node. Maximum entropy indicates the highest level that can be achieved from

the initial unorganized input to the most organized input.

The most noticeable advantage of decision trees is that they are easy to interpret.

The main disadvantages are that: (1) they imply ordering of the features as decision

nodes in the tree structure, even though there may not be any ordering in the features of

the data; and (2) as the tree descends towards the leaves, there are fewer and fewer data

available for the training, which easily leads to overfitting. Naïve Bayes does not have

any of these issues, and may explain the better performance of Naïve Bayes in our results

as compared to decision trees.

2.3.1.4 Logistic Regression

Logistic regression calculates the probability of a label likely to be assigned to a

bug report when given an input feature set. It uses the Bernoulli distribution function for

the probability and a sigmoid function for transforming the input:

𝑝𝑝(𝑦𝑦|𝑥𝑥,𝑤𝑤) = 𝐵𝐵𝑠𝑠𝑠𝑠(𝑦𝑦|𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝑤𝑤𝑇𝑇𝑥𝑥))

𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝛼𝛼) ≜
1

1 + exp (−𝛼𝛼)

where Ber represents the Bernoulli function, sigm represents the sigmoid function, y is

the label, x represents the input features, and w is the model's weight vector. Model

www.manaraa.com

16

parameter w is calculated in the training step. In the prediction step, the label with the

highest probability is assigned to the bug report.

2.3.1.5. Maxent

Maxent is also called Maximum Entropy Classifier. It is similar to Naïve Bayes

except that it uses search techniques to find the features that will maximize the

performance of classification rather than using probabilities. To search for features,

Maxent chooses those that contain the fewest unwarranted assumptions, which means the

maximum entropy in the input. Maxent is equivalent to Logistic Regression [38].

2.3.2. Machine Learning Tools

There are many good open source machine learning tools available. Popular ones

include Weka [36], NLTK [39], and Sklearn [40]. They are all used in this work because

each one of them has its own strength. Weka has rich GUI functionalities and abundant

tools to perform both machine learning and natural language processing. NLTK and

Sklearn are for use with Python. Because Python is an easy to use language, this makes

coding using NLTK and Sklearn easy as well. In addition, NLTK has a rich set of natural

language processing modules, and Sklearn has many classification modules for machine

learning. We also selected these tools for comparison purposes, to identify the best tool

for this work.

2.3.2.1. Weka

Weka is a well-known suite of machine learning tools developed at the University

of Waikato, New Zealand [41]. It is written in Java, and contains both command line and

GUI operations. The GUI interface is easier and more convenient to use, and has three

applications to suit different needs: Explorer [42], Experimenter [43], and

https://en.wikipedia.org/wiki/University_of_Waikato
https://en.wikipedia.org/wiki/University_of_Waikato
https://en.wikipedia.org/wiki/New_Zealand

www.manaraa.com

17

KnowledgeFlow [44]. Explorer is the easiest to get started with; however, it lacks some

of the capabilities of Experimenter and KnowledgeFlow. For example, in Explorer, one

can only perform one cross-validation, while in Experimenter there are more choices,

such as 10 times cross validation. In addition, there is no easy way to save the

classification results in Explorer.

Experimenter can be used for batches of experiments making it easy to compare

the performance of different classifiers, and results can easily be saved as csv or arff files.

Arff is short for Attribute-Relation File Format, and is the only file format that Weka

recognizes. Although Weka can accept csv files as input, internally the csv files are still

converted to arff files.

KnowledgeFlow supports the flow of information from one component to the next.

The user chooses the components from a large selection. Components are functional

blocks that perform certain tasks, such as DataSources, Filters, and Classifiers. In

KnowledgeFlow, the components form the palette from which the user can select.

Components can then be put on the canvas (editing screen) and connected together to

perform processing to meet the specific needs of the user.

2.3.2.2. Sklearn

Sklearn, also called scikit-learn, started as a Google Summer of Code project and

is a library of machine learning algorithms for Python programming [45]. It contains

various classification, regression, and clustering algorithms, as well as text preprocessing

facilities, such as TfidfVectorizer which we use to calculate the tfidf scores of words that

occur in documents.

https://en.wikipedia.org/wiki/Google_Summer_of_Code

www.manaraa.com

18

TFIDF [46] is short for Term Frequency – Inverse Document Frequency. Term

Frequency (tft,d) is defined as the number of occurrences of a term, t, in the document d.

If t is not in d, the value of tft,d is zero. Document Frequency (dft) is defined as the

number of documents in the corpus that contains the term t. If t does not exist in any

documents in the corpus, dft is equal to zero. The Inverse Document Frequency (idft) is

used to reduce the effect of terms that appear in many documents; it is defined as:

𝑖𝑖𝑖𝑖𝑓𝑓𝑡𝑡 = 𝑙𝑙𝑠𝑠𝑠𝑠
𝑁𝑁
𝑖𝑖𝑓𝑓𝑡𝑡

where N is the total number of documents in the corpus.

Thus, from the equation, a large value of dft makes idft small.

TFIDF is used to measure the importance of a term in a document. If the term

appears many times in only a few documents, but rarely in other documents, then it will

have a high TFIDF score. This means that the term is very informative in conveying the

topic(s) of the few documents in which the term appears. The definition of TFIDF is:

𝑓𝑓𝑓𝑓 − 𝑖𝑖𝑖𝑖𝑓𝑓𝑡𝑡,𝑑𝑑 = 𝑓𝑓𝑓𝑓𝑡𝑡,𝑑𝑑 × 𝑖𝑖𝑖𝑖𝑓𝑓𝑡𝑡

2.3.2.3. NLTK

NLTK stands for Natural Language processing Tool Kit. It was originally

developed at the University of Pennsylvania, and has since been contributed to by dozens

of volunteer developers [47]. NLTK is also written in Python and is intended for NLP

processing using Python.

www.manaraa.com

19

Although NLTK is more often used for NLP, it also contains a few popular

classifiers for machine learning purposes (for use after the natural language text is

processed). These include NaiveBayes, DecisionTree, MaxEnt, and others. Since these

classifiers are native to NLTK, they are easier to use after using NLTK’s natural

language processing algorithms; the classifiers in Sklearn and Weka have to be called

from NLTK using NLTK’s Sklearn and Weka wrapper methods.

2.3.3. Performance Evaluation Metrics for Classification

In order to pick the best classifier for predicting bug reports not yet labeled, it is

necessary to have a set of evaluation metrics that can fully examine the performance of a

classifier. The following metrics are commonly used in machine learning.

2.3.3.1. Accuracy

Accuracy [48] is the simplest metric used to evaluate a classifier. It measures the

percentage of correctly predicted test data over all test data. Accuracy is not a good

metric: when the two labeled data sets are hugely unbalanced, a bad classifier can blindly

label every input to be in the majority class and can still achieve very high accuracy. For

this reason, precision and recall or F-measure are preferred to accuracy.

2.3.3.2. Precision and Recall

For binary data (those that have only two labels), one can assume that one label is

positive and that the other is negative. Even if the data is not binary, we can let the label

in consideration be the positive label, and all other labels be negative. Precision [48] is

then called the positive predictive value. It is the percentage of correctly predicted

positive data (TP) over all predicted positive data. Recall [49], also known as sensitivity,

www.manaraa.com

20

is the percentage of correctly predicted over all positive. Thus, they can be written in the

following mathematic forms:

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
× 100%

𝑅𝑅𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
× 100%

where TP stands for True Positive, FP stands for False Positive, FN stands for False

Negative, TP+FP is all data that are predicted to be positive, and TP+FN is all positive

data.

2.3.3.3. F-measure

F-measure [50] is a more comprehensive measure of performance as it takes into

account the effect of both precision and recall and is the harmonic mean of both:

𝐹𝐹_𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 =
2 × 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 × 𝑅𝑅𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 + 𝑅𝑅𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙

2.3.4. Common Practices in machine learning

Since machine learning is closely related to statistics, learning results need to be

statistically evaluated. Common practices include cross-validation to validate the

generalization of a classifier’s result, T-test to check if two sets of result data are

statistically significant, as well as other tests.

2.3.4.1. Cross-Validation

Cross-validation [51] in machine learning is a validation technique to assess the

classifiers’ performances. It evaluates how the results of the classifiers will generalized to

www.manaraa.com

21

an independent data set. In other words, it overcomes the problem of overfitting and

makes the predictions more general.

In machine learning, 10-fold cross-validation is commonly used. In 10-fold cross-

validation, all training data is divided into 10 equal parts. Each time, 9 parts are used for

training, with 1 part used for testing. This will repeat for 10 times. The average of the

performance metrics (accuracy, precision, recall, and F-measure) as discussed in 2.3.3 are

calculated to determine how good the classifiers are. Error! Reference source not

found. shows this process. The advantage of cross-validation is that all data in the dataset

are used for both training and testing, which reduces overfitting.

Round 1

Round 2

Round 10

total training data

Figure 1. A sketch of 10-fold cross-validation.

Since machine learning is rooted in statistics, machine learning results naturally

need to be tested statistically for its significance. Because of this, researchers more

commonly perform 10 times 10-fold cross-validation. The process is similar to the 1 time

10-fold cross-validation discussed above. However, before each 1 fold cross-validation,

the data is fully randomized. This is repeated 10 times. This further reduces overfitting.

With 10-time 10-fold cross-validation, 100 data points for each performance metric are

generated. With this large number of data, it can be applied on hypothesis tests such as T-

test with data being generally normal. The normality of the performance metrics data in

www.manaraa.com

22

this study will be shown later in section 3.2.2.3. Due to large number of data, only some

samples will be shown.

2.3.4.2. Statistic Tests

In general statistic tests including T-tests [52] have two hypotheses: the null

hypothesis [53], which assumes that the two data sets are statistically equal; and the

alternative hypothesis [54], which assumes that the two data sets are statistically different.

P-value [55] calculated in statistic tests is the probability of finding out if one data set is

significantly different from the other. A commonly used p-value is 0.05, which indicates

a 95% confidence level. A confidence interval is an interval estimate combined with a

probability statement. It is the percentage of all possible samples that can be expected to

include the true population parameter. When using p-value of 0.05, if the T-test results

give us a p-value of less than 0.05, it means that the two data sets are significantly

different, or the alternative hypothesis is true; otherwise, we cannot reject the null

hypothesis (the two data sets are statistically equal).

2.3.4.2.1. T-test

Many statistic tests can be used to evaluate experiment data. However, in this

study, we used T-test, which is a hypothesis test, on the mean of the data. In our case, the

data is performance metrics data from the 10-time 10-fold cross validation results and

other results from a test similar to cross-validation.

There are two types of T-test, paired T-test and unpaired T-test. Paired T-test is

generally used for studies where the two pairs of data are generated before and after some

treatment.

www.manaraa.com

23

Unpaired T-test, also called student’s T-test, is applied to two independent data

sets. In this test, the two data sets do not have to have the same data size. It assumes that

the data is from a normal distribution and that the standard deviation is approximately the

same in the two data sets. It calculated the mean difference and p-value.

2.3.4.2.2. F-test

F-test [55] is used to test if two population variances are equal. It does this by

comparing the ratio of two variances. Variances are a measure of dispersion, or how far

the data are scattered from the mean. If the variances of two populations are equal, the

ratio is 1.

In this study, F-test is used to test if the variations in the performance metrics

results between two classifications are equal. For example, different techniques were

used to improve classifiers performance. The baseline technique is to use all words (AW)

of all the documents for classification. The others are using high information words (HIW)

and using high information words plus bigram (HWB). Using F-test, we can determine if

the metrics data from the different techniques have equal variance or not. The purpose of

this is for T-test. There are two types of T-tests in Microsoft Excel. One is for equal

variance and the other is for unequal variance. F-test results will determine which T-test

to use in order to find out the statistical significance of the metrics data between the

baseline (AW) and HIW/HWB.

www.manaraa.com

24

Chapter 3

Predicting Configuration Bug Reports and Extracting

Configuration Options

This chapter discusses the current research work in detail. It uses a Mozilla

configuration bug report as an example to promote the importance of this study. It then

delves into the design and the result analysis of this research.

3.1 Motivation of the Study

A configurable system is a software system with a core set of functionality and a

set of variable features which are defined by a set of configuration options [56]. A

configuration option can be specified in a configuration file, source code, and/or in a user

input option. A configuration database (also called a configuration model) consists of all

the configuration options in an application. Constructing an effective configuration model

has been well discussed in recent work [56]. In this study, it is assumed that the

configuration model is known. Changes to the value of a configuration option may

change the program’s behavior in some way. If such changes cause the system to behave

incorrectly, a configuration bug occurs. Firefox, a popular web browser and also a highly

configurable system, is used to motivate the approach in this study.

In Firefox, when the configuration option O1 = Browser.urlbar.filter.javascript is

set to false, it allows “javascript:” URLs to appear in the autocomplete dropdown of the

location bar. This can cause potential security threats. Figure 2 shows a bug report

associated with the configuration option O1. This bug involves 22 comments and took 21

www.manaraa.com

25

months to fix. In fact, at the end of the 21 months, a single change to the value of this

configuration option fixed the problem.

Figure 2. A configuration bug report.

Suppose that an inexperienced developer is assigned to work on this bug. He or

she may spend much time figuring out that it is a configuration bug. In such a case, the

developer has to inspect the source code and try various inputs and configurations to

hopefully reproduce, locate, and fix the bug. Even if an experienced developer is assigned

to work on this bug and notices that it is related to configurations based on the system’s

specific behavior (e.g., mouse scrolling events), she may not be able to quickly determine

the real configuration option from the configuration database (i.e., O1) as there are

approximately 1650 possible configuration options in the configuration model of Firefox.

Therefore, to ease the process of configuration, debugging, and diagnosis, we need new

techniques that can identify a configuration bug report and link the bug to specific

configuration options.

www.manaraa.com

26

In this study, it has been observed that natural language descriptions of a bug

report provide information to indicate whether a bug is related to configuration options.

In the running example, the word “bookmarklets” is likely to be an indicator of a

configuration problem. The word “javascript” ties to the name of a configuration option

O1 obtained from the configuration model. Based on these observations, it was

determined that natural language processing (NLP) techniques can be used to process text

reports and convert them into individual words to be used as features in machine learning.

Developers can use the trained machine learning classifiers to label a bug report as either

a configuration bug report or a non-configuration bug report. Also, with the help of NLP

and information retrieval (IR), the classifier returns a list of ranked configuration options

extracted from the configuration bug reports to the developers. In the above example, O1

is ranked at the top of the list.

3.2. Experiment Design and Setup

This section discusses the design and the setup of the empirical study. In the

design, a top level diagram and two detailed diagrams are presented. The top level design

describes the two main functional blocks of this study, i.e., the classification of the bug

reports and the identification of the configuration options. The two detailed diagrams

show how each of the functionalities are carried out.

In the setup, the data sources of the bug reports are discussed and the

methods/tools used in the analyses of the classification results are presented.

www.manaraa.com

27

3.2.1. Experiment Design

The design for this study includes two main steps, as shown in Figure 3. The first

step is called classification, and it takes bug reports with known labels (configuration vs.

non-configuration) as input, trains classifiers on these bug reports, then uses these

classifiers to predict the un-labeled bug reports, i.e., identify them as either configuration

or non-configuration bug reports. The second step is called Configuration Identification:

it accepts the labeled configuration bug reports, uses NLP procedures to find the

similarities between the bug reports and the configuration names, and outputs the

associated configuration names ordered from more likely to less likely.

classifiers

Classification

bug reports
w/o labels

bug reports
w/ labels

NLP
processing

config.
database

Config. Identification

similarity

comparison

associated
configs

train
predict

config. bug reportsnon-config.
bug reports

Figure 3. The Process flow of bug reports classification and configuration

identification.

Figure 4 is a more detailed sketch of the classification step (step 1). A webpage

that has bug report information also contains extraneous information that needs to be

excluded. Thus, this step starts with extracting useful information from a webpage given

www.manaraa.com

28

bug reports URLs. A python package called Beautiful Soup is used to accomplish this. A

text file is thus created that contains only the relevant information from the webpage.

Generally, only the title and the comment text from the webpage are included.

Bug reports URLs

Extraction of reports
texts

Word tokenization

Stopwords removal

Lemmatization

Further feature
reduction

Highly informative
words extraction

Bigram inclusion

Training of
classifiers

Prediction of unlabeled
bug reports

features of
unlabeled bug

reports

features of
unlabeled bug

reports

config. bug
reports

non-config.
bug reports

Figure 4. Bug reports classification process.

Features are then extracted from the cleaned bug reports (now the plain text files).

The features in this study are words for machine learning. Feature extraction

encompasses the next six small steps in Figure 4. These are NLP procedures, and

Python's NLTK package is used to simplify the tasks. The bug report texts are first

broken down into words. Then, stopwords are removed. It is found that just using the

www.manaraa.com

29

default stopwords corpus in NLTK is not enough, so more stopwords are included that

are specific in the bug reports, such as people's names. This step is followed by

lemmatization and more feature reduction to further reduce the dimensionality of the

features. Lemmatization restores a word to its dictionary form. Thus, for example,

"configurations" will become "configuration." In addition, it is also found that people

sometimes write "preference" as "pref," and "configuration" as "config." So words such

as these are converted back to their original forms. Still there can be many words that are

considered noisy data in machine learning and could not only reduce learning

performance, but also misguide a classifier. As an example, Tables 1 and 2 in section

3.3.1 compare the classification results using all words as features and using only

selected words as features. The result is much better in the case of the selected words

(high information words and/or bigrams).

Thus, to improve the performance of the classifiers, a few more steps can be

included, i.e., information gain using chi-sq and bigram. The fundamentals of chi-sq and

bigram have been discussed in Chapter 2. In NLTK package, there are two modules

called metrics and collocations. The metrics module has the BigramAssocMeasures

class which contains an implementation of chi-sq. The collocations module has the

BigramCollocationFinder class that can be used to find n-gram (n is a number, e.g. n=1

means unigram, n=2 means bigram). These classes are used to identify the highly

informative words and commonly occurring bigrams. The selected features (words and

bigrams) are arranged in the form of a dictionary with the words/bigrams as the key and

the assigned values as the values of the keys. The format used is {word: True}, where

word is the word selected, and the value is "True." As long as a word/bigram is selected

www.manaraa.com

30

as a feature, "True" is assigned as the value for it to indicate that the word/feature appears

in that report. Using any other values for the same key will be considered another feature,

which is not correct. For example, {preference: True} and {preference: 1} are considered

two features, even though the word feature is the same, namely "preference." Although

only 100 high informative words are retained as features, the results can sometimes be

much better than indiscriminately including all words. For this study, in order to evaluate

the effectiveness of including only high information words and bigrams, three groups of

word features are extracted for each bug report database, i.e., all words (AW), high

information words (HIW), and high information words plus bigrams (HWB). AW is the

control study, and the other two are compared to AW.

Text in bug reports can vary quite a lot, meaning that one bug report may contain

words which are quite different from those in another report. Thus, the extracted features

in one report may be quite different from the other reports. This creates a problem for

some machine learning tools, e.g. Weka classifiers. In Weka, an ARFF file is provided as

input to a classifier for learning, and the features (words in this study) in the ARFF file

are fixed, although they can take on different but allowed values. Classifiers in NLTK are

tailored to this special characteristic of text mining (varying words in different bug

reports). Thus, using the above procedures to extract features does not work in Weka.

Because of this, feature extraction for Weka classifiers is done inside Weka GUI.

Although the steps are not exactly the same as Figure 4, the procedures are essentially the

same.

In Weka, the first step is to convert the text files that are created in step 2

(extraction of reports texts) of Figure 4 into ARFF files. This is performed using the 4th

www.manaraa.com

31

sub-application in Weka GUI, i.e., Simple CLI. The command used in CLI is:

java.weka.core.converters.TextDirectoryLoader. This is a fast operation and it creates

the ARFF file for all the documents in a specified directory in less than a minute. In order

to generate the correct ARFF file, inside the directory there should be two sub directories

with the names config and nonconfig. config subdirectory contains all the known

configuration bug reports, while the nonconfig subdirectory contains all the known non-

configuration bug reports. The subdirectory names are important since they are the clue

for Weka to assign as values to the class. In this case, the class can take the value of

either config or nonconfig. For example, for all the Mozilla bug reports converted from

URL links into 300 text files, the 150 configuration related text files are stored in the

config directory, and the 150 non-configuration related are stored in the nonconfig

directory. These two directories are subdirectories of “Mozilla” with prepending path.

The ARFF files created contains only two features, one is the whole text, and the

other one is the class (config vs nonconfig). To convert the text into words, the

StringToWordVector filter is used in the Weka Explorer sub-application to further divide

the text feature into word features. There are a number of options to select to get high

information words and high information words plus bigrams. The steps are similar to

steps 2-8 in Figure 4 with some differences. For example, Weka does not contain

lemmatization, but stemmer. And thus, in HIW and HWB the LovinsStemmer is used.

LovinsStemmer is the oldest in use and is also the fastest [57]. For AW, no stemming is

used except that the extracted features are all words; numbers and other symbols are

discarded. High information words are extracted using Tfidf.

www.manaraa.com

32

With the feature sets prepared, they are then passed to the classifiers for training.

The classifiers included in this study are those discussed in Chapter 2. NLTK classifiers

used are Naïve Bayes, Decision Tree, and MaxEnt; Sklearn classifiers are Naïve Bayes,

Decision Tree, Logistic Regression and SVC (Support Vector Machine for Classification);

Weka classifiers are ZeroR, NaiveBayes, Decision Tree (J48), Logistic Regression and

SVM.

In Weka as in NLTK and Sklearn, classification is performed programmatically

rather than using Weka’s Explorer or Experimenter. In Explorer, only one round of 10-

fold cross validation can be performed, which generates too little data for statistical

significance analysis. Experimenter can run 10 times 10-fold cross validation; however, it

contains too much irrelevant information and can be hard to locate the performance

metrics data in the exported csv files. Since Weka is written in Java, in this study Java

programs are written to run Weka classifiers.

Figure 5 shows the flow of the second step in Figure 3. There are a configuration

database and the configuration bug reports. The configuration database is a list of

configuration names and, depending on the software, the configuration names can use

camel case or have dots or underlines separating the words. So NLP processing of the

configurations is different from that shown in Figure 3. In processing configurations, the

words are split by the camel case, the underlines, and the dots. Sometimes when two

words are combined without any of the above, regular expressions are used to split them.

The words are restored to their root forms with lemmatization. Then the words are

combined by spaces to become a string of words. The end result of this is one document

is one string of words. For example, the Mozilla configuration

www.manaraa.com

33

Browser.urlbar.filter.javascript discussed in section 3.1 is split into the words: browser,

url, bar, filter, javascript. These words are combined to become browser url bar filter

javascript. This is one document in the configuration database. After all the

configurations are converted, the configuration corpus is built up and ready for the next

step, i.e., Tfidf fitting and transformation.

Config. bug reports

NLP processing into
pure word text

Tfidf transformation

Identification of
similarities

Output the first 10
most relevant config.

Config. Database

NLP processing into
corpus of words

Tfidf fitting and
transformation

Figure 5. Configuration identification of a configuration bug report.

For configuration bug reports, in addition to similar processing described above

for the configuration database, they are first processed as in Figure 6 (steps 2-8). The

configuration corpus is then processed with TfidfVectorizer in Sklearn to convert the

collection of documents (each document is one configuration transformed into a string of

words) to a matrix of TF-IDF features. Figure 6 lists part of the configurations in the

three open source projects. Before discussing the procedures, it is necessary to provide

definitions of the terms to be used.

In this step, the TfidfVectorizer learns the vocabulary from the configuration

corpus, counts the frequency of the words and finds the inverse term frequency of the

www.manaraa.com

34

words in each document of the corpus. In TfIdfVectorizer, both unigrams and bigrams

for the ngram_range parameter are included to help increase the chance of finding the

right similarities between bug reports and configurations. Including bigrams will

significantly increase the size of the matrix; however, since a configuration's size is very

small (only a few words) compared to a bug report's size, this is not much of a penalty.

The trained TfidfVectorizer is then used to transform (construct matrix form) the bug

reports. Each bug report is processed one at a time in the whole flow. After the bug report

transformation, TfidfVectorizer presents the Tfidf score of each word that occurs in both

a configuration and a bug report. A naive approach is adopted to calculate the similarity

score. This is done by adding the scores of all words that occur in each configuration and

the bug report and output the configurations with the first 10 highest scores.

Figure 6. Some configurations in the three open source projects.

www.manaraa.com

35

3.2.2. Experiment Setup

3.2.2.1 Data for Classification

The efficacy of classification and configuration identification of bug reports in this design

is evaluated on bug reports from three open source software projects, i.e., Mozilla, MySQL, and

Apache. For diversity of data, we are not restricted to a few specific components of the software.

The reason to choose bug reports from these open source projects is that they are popular

software, have bug reports generally available, and some Mozilla bug reports are already labeled

as associated with some configurations in Mozilla’s website. The last characteristic is especially

helpful since it can be used as the ground truth to evaluate our design. For those configuration

bug reports collected that are not identified as associated with configurations, they are identified

manually. In addition, labeling a bug report as configuration or non-configuration is also done

manually. This involves both using key word search in bug report database and reading through

the reports.

For each software project, 300 bug reports are collected, with equal number of

configuration and non-configuration bug reports. Thus, the total number of bug reports collected

for all three software projects is 900. Collecting an equal number of configuration and non-

configuration bug reports is to ensure that the classifiers that are trained on these bug reports are

not biased. For machine learning, it is always desirable to have more bug reports for training

However, collecting bug reports and correctly labeling them is very time consuming; besides, this

number has been shown to be enough for machine learning [58].

3.2.2.2 Cross Validation

As discussed in Chapter 2, cross validation reduces overfitting and makes the results of

trained classifiers generalized to independent bug report prediction. Thus, in the first part of the

study, 10-fold cross validation is performed for all the classifiers on all the data sets. In addition,

www.manaraa.com

36

in order to get enough data to analyze the statistical significance of the results, the 10-fold cross

validation is run 10 times in each case to get 100 data points for each performance metric

(accuracy, precision, recall and F-measure). Before each run, the bug reports, or the word features

of them, are completely randomized so that the result is not a duplicate of the previous run.

Although cross-validation is generally considered a good measure of a classifier’s

performance, the features are also known for both training data and testing data. In classifying

bug reports, if a classifier is used to predict a truly unknown bug report, it would not be possible

for the classifier to know the features of the unknown bug report. This is because one bug report

can use quite different words than another, and words are the features for classifiers to train. It is

therefore predicted that 10 times 10-fold cross validation results will be better than if a classifier

is trained only on the features of the trained reports but used to test unknown bug reports. Due to

this concern, another type of validation is performed that is similar to the 10 times 10-fold cross

validation but takes this into consideration. In addition, in order to get more bug reports for

testing, unlike 10-fold cross validation, 5-fold is used. Thus, of each bug report type

(configuration or non-configuration), 30 bug reports are used for testing, while 120 are used for

training. To get 100 data points for each performance metric, the 5-fold validation has to run 20

times.

Here is how the training and testing process is conducted: In this validation, the bug

reports will be shuffled 20 times. After each shuffle, the bug reports are divided into five parts for

both configuration and non-configuration. Four parts are copied into a directory that is used for

training, and one part is copied into another directory that is used for testing. This is rotated five

times similar to Figure 1. Feature extraction for training is done only on the reports in the training

directory, while features for testing are extracted from reports in the testing directory. This makes

sure that the classifiers do not know the testing bug reports, which is more representative of

reality. After one training and testing, one data point is obtained for all the metrics. Then the

www.manaraa.com

37

training and testing directory’s contents are cleared and filled with the next rotated data. After the

five rotations are done, it is similar to the completion of one 10-fold cross validation. Then the

bug reports are shuffled, and this process repeats for 20 times. To differentiate this from the 10

times 10-fold cross validation, it will be called 20x5 training and testing.

The 20x5 training and testing runs much slower than 10 times 10-fold CV. The main step

that makes it slow is in feature extraction. In 10 times10-fold CV, feature extraction is performed

only one time, while in the 20x5 training and testing, feature extraction is performed 100 times.

3.2.2.3. Statistical Significance Test

As discussed before, unpaired T-test is performed to evaluate the statistical significance

of the performance metrics. In this study, the AW method is considered the baseline or control

group, while HIW and HWB are the treatment groups. This is because one of the objectives of

this study is to evaluate the effectiveness of using high information words and bigrams as features

in classifying bug reports compared to using all words as features.

Microsoft Excel Data Analysis package contains a lot of statistical analysis tools, and it

includes both T-test and F-test. F-test is used to compare the variance of the control data vs. the

treatment data. When the control and the treatment data have unequal variances, T-test with

unequal variance in Excel is used to test for significance; otherwise, T-test with equal variance is

used.

F-test assumes that the data is normally distributed and the data points are independent of

each other. The second assumption is automatically satisfied since each classification run is

independent of others. Thus, in order to use F-test, data normality has to be verified. In this study,

Q-Q plot [59] is used to examine data normality. This is done in Excel as well. The raw

performance metrics data to be plotted is sorted first. Then Cumulative Distribution Function

(CDF) is calculated which is used for calculating expected value and Z-value. Expected value is

www.manaraa.com

38

calculated using the NORM.INV function in Excel with parameters of CDF and the mean and

standard deviation of the raw data. Z-value is calculated using the function NORM.S.INV with

parameter CDF. Finally, the data is plotted with Z-value on the x-axis, while the raw data and the

expected values on the y-axis. The plot for the configuration F-measure data for Mozilla

classified by NLTK Naïve Bayes using HIW is shown in Figure 7 as an example. Expected

values in the plot represent data in normal distribution. Raw data and the expected values do not

generally deviate much, which is an indication that the data is normally distributed. Thus, using

F-test for variance test is valid.

 (a) (b)

Figure 7. Q-Q plots of the Mozilla configuration F-measure classified using NLTK

Naïve Bayes using HIW.

Figure 8 shows the statistical significance test on configuration F-measure of Apache

result. The top table shows the F-test result on the variance of configuration F-measure. Since p-

value is great than 0.05, the null hypothesis is assumed true, which means that there is no

statistical significance between the two variances. Thus, T-test can be performed, which is shown

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-4 -2 0 2 4
Z-value

config F
(AW)
Expected

0.6

0.7

0.8

0.9

1

1.1

-4 -2 0 2 4Z-value

config F
(HIW)

Expected

www.manaraa.com

39

as the second table in Figure 8. In this result, p-value is significantly smaller than 0.05. Thus, the

null hypothesis is rejected, which means the two means are significant different.

Figure 8. F-test on the variance and T-test on the mean of configuration F-measure

of Apache 10 times 10-fold CV using NLTK Naïve Bayes.

3.3. Results and Analyses

This section presents results and analyses of classification and configuration

identification. Through the results and analyses we can see that using the approaches in

www.manaraa.com

40

the study to classify configuration bug reports and to identify configuration options is

effective.

3.3.1 Classification of Bug Reports into Configuration and Non-configuration

Related

The mean values of the performance metrics are shown in Tables 1 to 15. One

table contains the results for one open source project (Apache, Mozilla, or MySQL) using

one classification software (NLTK, Sklearn, or Weka) with either 10 times 10-fold CV or

50x2 training and testing. HIW and HWB data are compared with AW to see if using

high information words and bigrams can improve classifiers’ performance. Adopting the

format in Weka Experimenter, the HIW and HWB data in the tables are postfixed with

either “*” or “v”. The symbol “*” indicates that the HIW/HWB data are statistically

worse than the AW data, while the symbol “v” indicates that they are statistically better

than the AW data. If there is no statistical difference between HIW/HWB and AW, then

there is no symbol appended to the data.

Tables 1-5 show the Apache results. Tables 1 and 2 are both from NLTK

classifications. In both cases, we can see that using HIW or HWB improves the

prediction performance. Since F-measure is the more comprehensive representation of

the overall performance of a classifier, F-measure results are used in analysis from now

on. The greatest increase in performance is Maxent with 20x5 training and testing. From

AW to HIW, the non-configuration F-measure increases by 50%. It is also noted that by

not including testing data in feature selection as done in 50x2 training and testing, all

three classification schemes (AW, HIW and HWB) show some decrease in the results, as

can be seen by comparing Table 1 to Table 2, and Table 3 to Table 4. Although 10 times

www.manaraa.com

41

10-fold CV (10x10) and 50x2 training and testing use different documents for training

and testing, the more number of testing bug reports used in 50x2 should stabilize any

variation in results due to too few testing bug reports, and the 120 bug reports of each

type in 50x2 should be sufficient for training. Thus, it is believed that the different

number of training and testing bug reports in 50x2 as compared to the 10x10 is not the

factor contributing to the decrease in performance; it is the fact that not using testing bug

reports’ features for training that leads to the decrease. This is understandable, since if a

classifier uses all features to make a decision, it is like it has seen the bug reports that are

used for testing. The result certainly should be better. However, the decrease is minor,

which makes 10x10 still a good validation metric. Besides, by using the two different

approaches to evaluate the classifiers’ performances, it also proves the validity of either

one, since the results show very little difference.

Table 1. Apache 10 times 10-fold CV using NLTK classifiers

Eval. Metrics Maxent NaiveBayes Decision Tree
AW HIW HWB AW HIW HWB AW HIW HWB

Accuracy 0.725 0.872v 0.88v 0.726 0.87v 0.88v 0.812 0.845v 0.834
Precision Conf. 0.7 0.858v 0.867v 0.661 0.84v 0.854v 0.856 0.87 0.853

Non. 0.806 0.897v 0.906v 0.932 0.921 0.919 0.787 0.833v 0.83v
Recall Conf. 0.862 0.9v 0.906v 0.959 0.925* 0.921* 0.755 0.818v 0.815v

Non. 0.588 0.845v 0.854v 0.493 0.815v 0.838v 0.868 0.872 0.853
F-meas. Conf. 0.755 0.875v 0.883v 0.78 0.878v 0.884v 0.798 0.839v 0.829v

Non. 0.643 0.867v 0.876v 0.63 0.86v 0.874v 0.822 0.849v 0.837v

Table 2. Apache 20 times 5-fold training and testing using NLTK classifiers

Eval. Metrics Maxent NaiveBayes Decision Tree
AW HIW HWB AW HIW HWB AW HIW HWB

Accuracy 0.679 0.857v 0.845v 0.725 0.837v 0.833v 0.808 0.848v 0.838v
Precision Conf. 0.701 0.838v 0.806v 0.657 0.799v 0.783v 0.847 0.861v 0.848

Non. 0.749 0.885v 0.902v 0.93 0.898* 0.916 0.783 0.842v 0.845v
Recall Conf. 0.81 0.889v 0.912v 0.963 0.91* 0.93* 0.757 0.835v 0.828v

Non. 0.548 0.825v 0.778v 0.488 0.763v 0.736v 0.859 0.861 0.848
F-meas. Conf. 0.701 0.861v 0.854v 0.779 0.849v 0.849v 0.797 0.846v 0.835v

Non. 0.567 0.852v 0.833v 0.632 0.821v 0.813v 0.817 0.85v 0.839v

www.manaraa.com

42

In Tables 3 and 4, we can see that except for Naïve Bayes and Logistic

Regression, using either HIW or HWB, the classifiers perform better than using AW.

However, compared to NLTK, Sklearn classifiers generally perform better. Even when

using AW, the F-measure is still mostly greater than 0.8. The largest increase in

performance is SVM from using AW to HIW, which is 22.4%.

Table 3. Apache 10 times 10-fold CV using Sklearn classifiers

Eval. Metrics Logistic NaiveBayes
AW HIW HWB AW HIB HWB

Accuracy 0.869 0.836* 0.913v 0.892 0.877* 0.896
Precision Conf. 0.899 0.845* 0.946v 0.872 0.869 0.88

Non. 0.856 0.84* 0.892v 0.925 0.895* 0.924
Recall Conf. 0.838 0.834 0.88v 0.925 0.894* 0.923

Non. 0.9 0.839* 0.947v 0.858 0.859 0.868
F-meas. Conf. 0.862 0.835* 0.909v 0.895 0.879* 0.898

Non. 0.873 0.836* 0.917v 0.887 0.874 0.892
Eval. Metrics Decision Tree SVM

AW HIW HWB AW HIW HWB
Accuracy 0.801 0.853v 0.848v 0.621 0.871v 0.812v

Precision Conf. 0.814 0.87v 0.867v 0.895 0.96v 0.974v
Non. 0.804 0.833v 0.842v 0.575 0.817v 0.739v

Recall Conf. 0.791 0.818v 0.831v 0.268 0.776v 0.642v
Non. 0.811 0.872v 0.865v 0.974 0.967 0.981

F-meas. Conf. 0.796 0.839v 0.844v 0.396 0.855v 0.766v
Non. 0.803 0.849v 0.85v 0.722 0.884v 0.841v

Table 4. Apache 20 times 5-fold training and testing using Sklearn classifiers

Eval. Metrics Logistic NaiveBayes
AW HIW HWB AW HIB HWB

Accuracy 0.871 0.835* 0.9v 0.882 0.867* 0.84*
Precision Conf. 0.902 0.836* 0.94v 0.853 0.863 0.798*

Non. 0.85 0.841 0.871v 0.922 0.879* 0.905*
Recall Conf. 0.835 0.837 0.857v 0.927 0.877* 0.917

Non. 0.907 0.833* 0.943v 0.836 0.857v 0.763*
F-meas. Conf. 0.865 0.834* 0.895v 0.887 0.868* 0.852*

Non. 0.875 0.834* 0.905v 0.875 0.866 0.826*
Eval. Metrics Decision Tree SVM

AW HIW HWB AW HIW HWB
Accuracy 0.801 0.836v 0.844v 0.615 0.854v 0.791v

Precision Conf. 0.827 0.861v 0.866v 0.918 0.956v 0.972v
Non. 0.786 0.82v 0.833v 0.569 0.792v 0.714v

Recall Conf. 0.768 0.807v 0.821v 0.254 0.742v 0.601v
Non. 0.833 0.865v 0.868v 0.977 0.965* 0.981

F-meas. Conf. 0.793 0.83v 0.84v 0.387 0.833v 0.737v
Non. 0.806 0.84v 0.848v 0.718 0.869v 0.826v

www.manaraa.com

43

Table 5 is the Weka classification results. When using Weka, feature extraction is

done in Weka Explorer. Thus, it is not possible to perform 50x2 training and testing

programmatically where the feature selections are carried out 100 times. Because of this,

only 10 times 10-fold CV is done using Weka.

In general, Weka ZeroR classifier has the worst performance of all classifiers

(Weka, NLTK and Sklearn). It does not do any real prediction, but simply labels all bug

reports as configuration bug reports, as shown in the 1.0 configuration recall and 0.0 non-

configuration recall. It does so regardless of using AW, HIW or HWB. Using HIW or

HWB does not provide much performance improvement as in NLTK and Sklearn. We

can see that two classifiers (Decision Tree and Logistic Regression) perform better

without using high information words and bigram. Weka classifiers may be optimized to

work with all words. However, even though Weka’s Logistic Regression has much better

performance using AW than the HIW and HWB, it sacrifices time for the number. In

general, Logistic Regression takes hours (three or more hours) to complete using AW,

while it takes only about 10 minutes using HIW or HWB. When time is of a concern,

sacrificing a little performance degradation for timely results is a great trade-off. In the

worst case, the decrease in performance from using AW to HWB is 15.8% in non-

configuration F-measure with Logistic Regression.

www.manaraa.com

44

Table 5. Apache 10 times 10-fold CV using Weka classifiers

Eval. Metrics ZeroR NaiveBayes Decision Tree
AW HIW HWB AW HIB HWB AW HIW HWB

Accuracy 0.5 0.5 0.5 0.814 0.854v 0.863v 0.844 0.82* 0.822*
Precision Conf. 0.5 0.5 0.5 0.844 0.896v 0.865v 0.856 0.855 0.849

Non. 0.0 0.0 0.0 0.801 0.832v 0.873v 0.846 0.801* 0.811*
Recall Conf. 1.0 1.0 1.0 0.783 0.809v 0.869v 0.838 0.779* 0.795*

Non. 0.0 0.0 0.0 0.845 0.899v 0.857v 0.851 0.861 0.849
F-meas. Conf. 0.667 0.667 0.667 0.807 0.845v 0.863v 0.843 0.811* 0.816*

Non. 0.0 0.0 0.0 0.818 0.86v 0.861v 0.844 0.827* 0.826*

Eval. Metrics Logistic Regression Support Vector Machine
AW HIW HWB AW HIW HWB

Accuracy 0.887 0.755* 0.756* 0.886 0.898 0.891
Precision Conf. 0.927 0.765* 0.756* 0.908 0.945* 0.933*

Non. 0.863 0.759* 0.771* 0.877 0.868 0.865
Recall Conf. 0.845 0.749* 0.77* 0.865 0.849* 0.847*

Non. 0.929 0.762* 0.743* 0.908 0.947v 0.935v
F-meas. Conf. 0.88 0.752* 0.758* 0.882 0.891 0.885

Non. 0.892 0.755* 0.751* 0.889 0.903 0.896

Tables 6-10 show the Mozilla classification results. The benefit of using high

information words and bigram is not as significant as in Apache. In some cases, there is

somewhat of a decrease in performance. However, as in Logistic Regression in Weka,

using all words as features increases the classification time. This is especially so when

the number of bug reports to predict is increasing.

Tables 6-7 are the NLTK classifiers results. As in Apache, Maxent has the worst

performance when all words are used as features. Not only does it predict very poorly,

but it also takes a very long time to complete (sometimes a few days). In the worst case, it

has zero non-configuration F-measure. But when using HIW, F-measure increases

significantly to 0.875.

Table 6. Mozilla 10 times 10-fold CV using NLTK classifiers

Eval. Metrics Maxent NaiveBayes Decision Tree
AW HIW HWB AW HIW HWB AW HIW HWB

Accuracy 0.5 0.888v 0.878v 0.5 0.862v 0.862v 0.877 0.891v 0.88
Precision Conf. 0.5 0.843v 0.841v 0.5 0.8v 0.82v 0.877 0.91v 0.881

Non. 0.0 0.96v 0.935v 0.0 0.975v 0.935v 0.889 0.882 0.889
Recall Conf. 1.0 0.965* 0.94* 1.0 0.98* 0.942* 0.885 0.872* 0.885

Non. 0.0 0.811v 0.815v 0.0 0.745v 0.782v 0.87 0.909v 0.875
F-meas. Conf. 0.667 0.898v 0.886v 0.667 0.879v 0.874v 0.878 0.887 0.88

Non. 0.0 0.875v 0.868v 0.0 0.839v 0.847v 0.876 0.893v 0.879

www.manaraa.com

45

Table 7. Mozilla 20 times 5-fold training and testing using NLTK classifiers

Eval. Metrics Maxent NaiveBayes Decision Tree
AW HIW HWB AW HIW HWB AW HIW HWB

Accuracy 0.5 0.875v 0.895v 0.5 0.832v 0.873v 0.879 0.894v 0.881
Precision Conf. 0.5 0.822v 0.852v 0.5 0.768v 0.835v 0.889 0.904v 0.884

Non. 0.0 0.957v 0.955v 0.0 0.959v 0.929v 0.876 0.889v 0.881
Recall Conf. 1.0 0.962* 0.96* 1.0 0.966* 0.935* 0.871 0.884v 0.878

Non. 0.0 0.788v 0.829v 0.0 0.698v 0.811v 0.888 0.903v 0.883
F-meas. Conf. 0.667 0.886v 0.902v 0.667 0.853v 0.881v 0.878 0.892v 0.88

Non. 0.0 0.862v 0.886v 0.0 0.802v 0.863v 0.881 0.895v 0.881

When using Sklearn classifiers, as shown in Tables 8 and 9, using high

information words and bigrams does not provide much of a benefit. Except for SVM,

Logistic Regression classifier actually performs better with all words as features; Naïve

Bayes and Decision Tree do not show any difference using AW and HIW/HWB. Using

HIW or HWB, we generally see a time saving benefit, especially when the number of bug

reports to be classified is large.

Table 8. Mozilla 10 times 10-fold CV using Sklearn classifiers

Eval. Metrics Logistic NaiveBayes
AW HIW HWB AW HIB HWB

Accuracy 0.94 0.822* 0.926* 0.887 0.887 0.87
Precision Conf. 0.96 0.816* 0.927* 0.85 0.86 0.824*

Non. 0.928 0.84* 0.932 0.943 0.93* 0.942
Recall Conf. 0.921 0.843* 0.928 0.948 0.933* 0.95

Non. 0.959 0.802* 0.924* 0.826 0.841v 0.791*
F-meas. Conf. 0.938 0.826* 0.926* 0.894 0.893 0.881

Non. 0.942 0.817* 0.926* 0.877 0.88 0.857*
 Decision Tree SVM
Accuracy 0.872 0.875 0.877 0.732 0.926v 0.869v

Precision Conf. 0.886 0.869* 0.876* 0.931 0.925 0.861*
Non. 0.866 0.892v 0.889v 0.666 0.937v 0.89v

Recall Conf. 0.859 0.887v 0.885v 0.505 0.934v 0.888v
Non. 0.884 0.862* 0.868* 0.96 0.918* 0.85*

F-meas. Conf. 0.87 0.875 0.877 0.644 0.927v 0.871v
Non. 0.872 0.83* 0.875 0.784 0.924v 0.865v

www.manaraa.com

46

Table 9. Mozilla 20 times 5-fold training and testing using Sklearn classifiers

Eval. Metrics Logistic NaiveBayes
AW HIW HWB AW HIB HWB

Accuracy 0.941 0.838* 0.926* 0.885 0.887 0.88
Precision Conf. 0.959 0.834* 0.927* 0.843 0.85 0.84

Non. 0.927 0.851* 0.932 0.944 0.94 0.936
Recall Conf. 0.922 0.852* 0.928 0.95 0.945 0.943

Non. 0.959 0.827* 0.924* 0.819 0.828 0.815
F-meas. Conf. 0.939 0.841* 0.926* 0.892 0.894 0.887

Non. 0.942 0.837* 0.926* 0.875 0.878 0.87
 Decision Tree SVM
Accuracy 0.874 0.864 0.877 0.728 0.927v 0.869v

Precision Conf. 0.883 0.855* 0.872 0.927 0.924 0.861*
Non. 0.871 0.879 0.889v 0.658 0.933v 0.89v

Recall Conf. 0.865 0.879v 0.885v 0.496 0.932v 0.888v
Non. 0.883 0.848* 0.868* 0.96 0.921* 0.85*

F-meas. Conf. 0.872 0.865 0.877 0.642 0.927v 0.871v
Non. 0.875 0.861* 0.875 0.78 0.926v 0.865v

Using Weka classifiers, there is generally not much difference in performance

when using AW compared with HIW/HWB, except for Logistic Regression which

always performs better but at the cost of taking a much longer time. Classification results

of Mozilla bug reports using Weka classifiers are shown in Table 10.

Table 10. Mozilla 10 times 10-fold CV using Weka classifiers

Eval. Metrics ZeroR NaiveBayes Decision Tree
AW HIW HWB AW HIB HWB AW HIW HWB

Accuracy 0.5 0.5 0.5 0.809 0.832v 0.836v 0.89 0.873* 0.882
Precision Conf. 0.5 0.5 0.5 0.876 0.89 0.885 0.906 0.874* 0.878*

Non. 0.0 0.0 0.0 0.772 0.799v 0.807v 0.886 0.886 0.898v
Recall Conf. 1.0 1.0 1.0 0.727 0.764v 0.778v 0.875 0.883 0.893v

Non. 0.0 0.0 0.0 0.891 0.899 0.894 0.905 0.863* 0.87*
F-meas. Conf. 0.667 0.667 0.667 0.789 0.817v 0.824v 0.887 0.875 0.882

Non. 0.0 0.0 0.0 0.824 0.843v 0.845v 0.892 0.87* 0.88

Eval. Metrics Logistic Regression Support Vector Machine
AW HIW HWB AW HIW HWB

Accuracy 0.86 0.791* 0.822* 0.94 0.931 0.933
Precision Conf. 0.866 0.803* 0.842* 0.951 0.96 0.96

Non. 0.869 0.795* 0.817* 0.935 0.912* 0.915*
Recall Conf. 0.864 0.787* 0.803* 0.93 0.903* 0.907*

Non. 0.855 0.796* 0.841* 0.949 0.959 0.959
F-meas. Conf. 0.861 0.789* 0.818* 0.939 0.928 0.931

Non. 0.857 0.79* 0.825* 0.94 0.933 0.935

Tables 11 and 12 show the classification results of MySQL bug reports using

NLTK classifiers. As in the classification of Apache and MySQL bug reports, Maxent is

sensitive to using AW or HIW/HWB as features. It always performs much worse when

www.manaraa.com

47

using AW. Decision Tree performs better using HIW/HWB in the 20x5 training and

testing but not statistically different in the case of 10x10 CV.

Table 11. MySQL10 times 10-fold CV using NLTK classifiers

Eval. Metrics Maxent NaiveBayes Decision Tree
AW HIW HWB AW HIW HWB AW HIW HWB

Accuracy 0.5 0.838v 0.811v 0.867 0.818* 0.799* 0.764 0.773 0.752
Precision Conf. 0.02 0.795v 0.771v 0.873 0.762* 0.756* 0.782 0.786 0.773

Non. 0.5 0.917v 0.88v 0.877 0.926v 0.878 0.763 0.774 0.748*
Recall Conf. 0.001 0.926v 0.895v 0.87 0.941v 0.9 0.743 0.759v 0.728*

Non. 1.0 0.751v 0.727v 0.865 0.695* 0.702* 0.785 0.787 0.777
F-meas. Conf. 0.003 0.852v 0.826v 0.867 0.84* 0.818* 0.756 0.767 0.744

Non. 0.667 0.819v 0.791v 0.866 0.788* 0.774* 0.769 0.776 0.757

Table 12. MySQL 20 times 5-fold training and testing using NLTK classifiers

Eval. Metrics Maxent NaiveBayes Decision Tree
AW HIW HWB AW HIW HWB AW HIW HWB

Accuracy 0.504 0.817v 0.804v 0.855 0.799* 0.798* 0.735 0.766v 0.757v
Precision Conf. 0.068 0.771v 0.761v 0.856 0.742* 0.746* 0.753 0.784v 0.776v

Non. 0.505 0.892v 0.872v 0.867 0.909v 0.889v 0.726 0.758v 0.745v
Recall Conf. 0.046 0.91v 0.894v 0.863 0.93v 0.915v 0.708 0.745v 0.725v

Non. 0.962 0.723* 0.715* 0.846 0.668* 0.681* 0.761 0.787v 0.789v
F-meas. Conf. 0.036 0.833v 0.821v 0.855 0.824* 0.82* 0.726 0.76v 0.747v

Non. 0.647 0.795v 0.783v 0.852 0.764* 0.768* 0.74 0.769v 0.764v

In the case of Sklearn classifiers, again SVM is more sensitive than the others

when using AW as compared to using HIW/HWB. It always performs worse with AW.

Again, Logistic Regression works better with AW at the cost of time. Decision Tree does

not show much difference using either AW or HIW/HWB, while there is slightly worse

performance in Naïve Bayes with HIW/HWB.

Table 13. MySQL 10 times 10-fold CV using Sklearn classifiers

Eval. Metrics Logistic NaiveBayes
AW HIW HWB AW HIB HWB

Accuracy 0.882 0.785* 0.86* 0.864 0.853 0.816*
Precision Conf. 0.911 0.808* 0.876* 0.827 0.819* 0.778*

Non. 0.865 0.778* 0.856 0.925 0.908* 0.885*
Recall Conf. 0.851 0.759* 0.847 0.931 0.915* 0.898*

Non. 0.913 0.811* 0.873* 0.797 0.791 0.734*
F-meas. Conf. 0.877 0.777* 0.858* 0.874 0.862 0.83*

Non. 0.886 0.79* 0.861* 0.852 0.841 0.797*
Eval. Metrics Decision Tree SVM

AW HIW HWB AW HIW HWB
Accuracy 0.736 0.737 0.752 0.819 0.861v 0.823

Precision Conf. 0.763 0.773 0.771 0.872 0.901v 0.908v
Non. 0.723 0.721 0.747v 0.808 0.836v 0.778*

Recall Conf. 0.697 0.683 0.728 0.771 0.817v 0.724*
Non. 0.774 0.791v 0.776 0.867 0.905v 0.921v

F-meas. Conf. 0.723 0.719 0.743 0.805 0.854v 0.798
Non. 0.743 0.75 0.757 0.825 0.867v 0.84v

www.manaraa.com

48

Table 14. MySQL 20 times 5-fold training and testing using Sklearn classifiers

Eval. Metrics Logistic NaiveBayes
AW HIW HWB AW HIB HWB

Accuracy 0.88 0.769* 0.849* 0.864 0.835* 0.814*
Precision Conf. 0.906 0.783* 0.855* 0.826 0.816 0.768*

Non. 0.862 0.765* 0.849* 0.919 0.866* 0.892*
Recall Conf. 0.851 0.753* 0.845 0.928 0.873* 0.909*

Non. 0.909 0.785* 0.852* 0.799 0.798 0.719*
F-meas. Conf. 0.876 0.764* 0.848* 0.873 0.841* 0.831*

Non. 0.883 0.772* 0.849* 0.853 0.828* 0.792*
Eval. Metrics Decision Tree SVM

AW HIW HWB AW HIW HWB
Accuracy 0.735 0.74 0.735 0.811 0.848v 0.792*

Precision Conf. 0.757 0.77v 0.756 0.864 0.888v 0.897v
Non. 0.725 0.722 0.723 0.802 0.816 0.739*

Recall Conf. 0.7 0.691 0.701 0.763 0.798v 0.667*
Non. 0.77 0.789 0.769 0.859 0.897v 0.918v

F-meas. Conf. 0.724 0.725 0.725 0.795 0.839v 0.759*
Non. 0.744 0.752 0.743 0.818 0.855v 0.816

In the case of Weka classifiers, again SVM performs better using HIW/HWB

while Logistic Regression and Naïve Bayes are better with AW, as shown in Table 15.

Table 15. MySQL 10 times 10-fold CV using Weka classifiers

Eval. Metrics ZeroR NaiveBayes Decision Tree
AW HIW HWB AW HIB HWB AW HIW HWB

Accuracy 0.5 0.5 0.5 0.876 0.822* 0.721* 0.754 0.752 0.743
Precision Conf. 0.5 0.5 0.5 0.887 0.806 0.67* 0.755 0.77v 0.771v

Non. 0.0 0.0 0.0 0.878 0.855v 0.842v 0.768 0.748* 0.734*
Recall Conf. 1.0 1.0 1.0 0.872 0.859 0.893v 0.767 0.731* 0.704*

Non. 0.0 0.0 0.0 0.881 0.785* 0.549* 0.741 0.772v 0.782v
F-meas. Conf. 0.667 0.667 0.667 0.876 0.827* 0.763* 0.756 0.745 0.729*

Non. 0.0 0.0 0.0 0.876 0.813* 0.656* 0.749 0.755 0.752

Eval. Metrics Logistic Regression Support Vector Machine
AW HIW HWB AW HIW HWB

Accuracy 0.89 0.735* 0.73* 0.867 0.851 0.871
Precision Conf. 0.882 0.74* 0.734* 0.903 0.852* 0.896

Non. 0.908 0.745* 0.74* 0.844 0.864v 0.86v
Recall Conf. 0.907 0.742* 0.737* 0.827 0.86v 0.845v

Non. 0.872 0.728* 0.722* 0.907 0.843* 0.897
F-meas. Conf. 0.892 0.736* 0.729* 0.861 0.852 0.866

Non. 0.886 0.73* 0.725* 0.872 0.849* 0.875

Overall, the NLTK classifiers are more sensitive to using AW or HIW/HWB than

the NLTK and the Weka classifiers. This is especially true with the NLTK classifier

Maxent. NLTK classifiers perform better when using high information words and

bigrams. In addition, bug reports from different projects seem to respond differently to

www.manaraa.com

49

AW or HIW/HWB. Apache bug reports are generally classified better when using

HIW/HWB rather than using AW for all three classifiers (NLTK, Sklearn and Weka). In

Weka classifiers, Logistic Regression generally performs better with AW, while in

Sklearn SVM performs better with HIW/HWB. Even when a classifier does not perform

well with HIW/HWB, the performance difference is not large compared to AW. However,

when a classifier does not perform well with AW, the performance can be very bad, as

can be seen in all three types of bug reports when classified with Maxent using AW.

One of the reasons that lead to the not so good performance in some cases when

using HIW/HWB may be due to the fact that in some bug reports (e.g. MySQL) there is

too much extraneous information such as the execution error results. These execution

error results are certainly helpful for developers to investigate, but they have many

repetitive words that are not helpful in identifying the type of bug report; unfortunately,

the high frequency of these words makes them highly informative words to the classifier.

The other likely reason is that the highly informative words do not occur

predominantly in one class (configuration) versus the other class (non-configuration). So

for example, even though words such as "set" or "value" do appear in the first 100 high

informative words produced from chi-sq in MySQL, they are not used, or are on the

lower level of the list by the classifiers as key features for identifying configuration bug

reports. The reason they make it into the 100 high informative words is likely due to the

reason they appear more frequently in some reports, which makes their count high. In

NLTK, once a word is selected as a feature, it is treated equally as other features,

regardless of how often it appears in some reports. This can be understood by the

explanation of how to represent features in NLTK in section 3.2.1, "experiment design",

www.manaraa.com

50

where all features selected have the value of "TRUE". With these selected features, it is

up to the classifier to decide which features are the important ones for determining a

report as configuration type or not. In the collected bug reports, it is likely that in the

training bug reports, the words "set" and "value" do not appear in enough bug reports to

merit being treated as important features, so they do not appear at all in Table 16. On the

contrary, even though the word "preference" is not high on the list of chi-sq scores in

Mozilla (as shown in Table 16), it becomes high on the list of features selected by

classifiers as shown in Figure 9. This is likely because "preference" appears in the

majority of configuration bug reports. Thus, even though there are not many words that

we consider very informative in Table 16 for Mozilla, the result in Mozilla is good. Note

that Table 16 lists the features ordered in their chi-sq scores, not the order from the

classifiers’ informative feature list. Figure 9 shows the first few most informative features

identified by NLTK NaiveBays for Mozilla bug reports. The ratios on the right indicate

how likely a feature is to appear in configuration bug reports vs. in non-configuration bug

reports.

Table 16. Some Most Informative Words In Mozilla, Apache And MySQL Bug
Reports That Are Used By Classifiers

Mozilla Apache MySQL
 crash 8375.5 configuration 542.4 option 253.4
 build 1675.2 module 200.3 global 212.7
 talkback 736.3 conf 196.4 configuration 208.1
 reproducible 676.0 directive 175.8 cnf 171.2

identifier 553.7 enable 170.2 usr 136.2
 option 442.9 src 112.3 ref 93.4
 agent 376.5 xindice 99.0 connector 81.9
 preference 357.3 ssl 95.0 socket 80.0
 code 272.8 configure 45.8 sock 68.2

www.manaraa.com

51

Figure 9. The first few most informative features identified by NLTK NaiveBayes in

Mozilla bug reports.

Table 17 shows the mean of configuration and non-configuration F-measures

using the six classifiers. These numbers are the average of the F-measures in Tables 1-15.

As we can see, performance does not change in ZeroR regardless of which method is

used, and it is also the worst classifier since its non-configuration F-measures are all 0s.

For the other five classifiers, with the exception of Logistic Regression, all other

classifiers perform better using HIW/HWB compared to using AW. Maxent makes the

greatest improvement when the feature extraction method is changed from AW to HIW,

with non-configuration F-measure value doubled. The classifier that benefits the second

most from using HIW/HWB is SVM, with an increase of 24% in configuration F-

measure. Logistic Regression actually does not perform as well when using HIW/HWB.

However, it takes much longer time to finish when using AW rather than HIW/HWB.

Overall, using HIW/HWB improves the performance of a classifier.

Table 17 also reveals that most classifiers perform much better than ZeroR which

is the baseline classifier used for comparison. The F-measure values of these classifiers,

www.manaraa.com

52

with the exception of Maxent with AW, are mostly more than 0.8. This implies that the

classification of bug reports as configuration or non-configuration is effective.

Table 17. Average configuration and non-configuration F-measures of the five
classifiers

 Config. F-measure Nonconfig. F-measure
 AW HIW HWB AW HIW HWB

ZeroR 0.667 0.667 0.667 0 0 0
Maxent 0.472 0.868 0.862 0.42 0.845 0.84

NaiveBayes 0.827 0.857 0.85 0.714 0.837 0.823
DecisionTree 0.806 0.818 0.817 0.816 0.824 0.824

Logistic 0.888 0.795 0.852 0.893 0.796 0.854
SVM 0.706 0.878 0.832 0.816 0.89 0.862

When comparing the three software packages, Weka is the most consistent

regardless of using AW or HIW/HWB, while NLTK is the most sensitive to these

methods (AW, HIW, HWB). However, NLTK classifiers can perform very well when the

right method (HIW/HWB) is used.

Of all the classifiers (not considering ZeroR), Logistic Regression and Maxent

appear to be the slowest classifiers, especially when using AW. Naïve Bayes is usually

very fast, and its performance sometimes is better than Decision Tree. However, in some

cases, it is moderately sensitive to the method used. SVM is also sensitive to the method

used.

The Figures A1-A15 in Appendix compare F-measures among the different

classifiers. We can see how the F-measure values of the 100 classifications vary. In

Tables 1-15, differences less than 0.1 (most of the time around 0.02 and 0.03) are

considered statistically different. In the figures, the differences such as these are not so

easily discernable. The most obvious differences between AW and HIW/HWB are NLTK

classification results on Apache (Figures A1-A4, NLTK classifiers and some Sklearn

www.manaraa.com

53

classifiers on Apache). When a classifier performs poorly, most of the time we can see

that the data points vary widely.

3.3.2 Identification of a configuration associated with a configuration bug report

In section 3.3.1, in order to evaluate the performance of classification and how it

can be generalized, 10 times 10-fold CV and a similar validation procedure are carried

out. In this section, the steps in Figure 3 are followed. First, for each bug report corpus

200 bug reports (100 configuration and 100 non-configuration) are used for training and

the rest are used as unlabeled bug reports for prediction (testing). After a bug report is

predicted to be configuration-related, it is used to identify its associated configurations.

For configuration option identification, all the configuration bug reports that are

used in testing are considered. There are 50 configuration bug reports used in testing in

each project. In Table 18, the accuracy ratio is calculated by the number of correct

identifications to the total number of configuration bug reports, which is 50. For Mozilla,

those configuration bug reports are already identified on Mozilla configuration website

(http://kb.mozillazine.org/Category:Preferences), so that information is used as ground

truth to test the accuracy of the configuration identification. For bug reports from the

other two projects, the association of a bug report with a configuration or a few

configurations is manually identified and is verified to be the correct identification.

Since a bug report could be associated with more than one configuration, the

configuration identification tool will present the first 10 most likely configurations. This

helps in the case that when it is not possible to identify the exact configuration, it is still

possible to narrow down the number of configurations. This will help a developer who

www.manaraa.com

54

works on the bug since he/she still gets relevant bug reports to consider rather than none

at all. If the already known to be related configuration occurs in the first 10 listed

configurations, it is considered a correct identification in this study. Although this type

of identification is loose, it is found that the tool developed in this study can identify the

correct configurations in the top five most of the time. In fact, it is not uncommon to see

that it finds the correct configuration as the first one on the list.

As discussed in section 2.3.2.2, Term Frequency-Inverse Document Frequency

(TFIDF) is used to measure the importance of a term in a document. This tool makes use

of TFIDF to calculate the similarity of a bug report and the configurations. The

configurations are ordered according to similarity score from highest to lowest. The

similarity is defined as:

𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙𝑠𝑠𝑖𝑖𝑓𝑓𝑦𝑦(𝑙𝑙,𝑖𝑖) = �𝑓𝑓𝑓𝑓
𝑡𝑡∈𝑏𝑏

− 𝑖𝑖𝑖𝑖𝑓𝑓𝑡𝑡,𝑑𝑑

where b is the bug report and d is the configuration.

Table 18 is an example of the tf-idf calculations the tool makes in identifying the

configuration associated with the bug report in Figure 2. In this example, the

configuration is browser.urlbar.filter.javascript. Its similarity to the example bug report

breaks down to the individual tf-idf scores of the five terms. Adding them together, we

get 0.16+0.18+0.15+0.14=0.64 which turns out to be the highest score of all other

configurations. Thus, the tool correctly identifies this configuration as the number one on

the list of all possible configurations associated with the example bug report.

www.manaraa.com

55

Table 18. Ranking terms in the example configuration option

term tf df idf tf-idf
browser 1 28 0.16 0.16

url 1 31 0.18 0.18

bar 0 - - -

filter 1 18 0.15 0.15

javascript 1 22 0.14 0.14

… … … … …

Results in Table 19 show that overall, this configuration identification tool is

effective in finding out which configuration is associated with the configuration bug

report under investigation. This is particularly true in Mozilla, with a high value of 0.92.

The tool performs worst in MySQL. This is mainly due to the fact that MySQl

configurations have irregular number of words in the configurations. For example, it has

configurations: "ssl", "ssl_accepts", "ssl_accept_renegotiates" in server configurations.

These configurations vary in size significantly. In these cases, our tool tends to choose

the longer configuration if the words "accept" and "renegotiate" also appear in the bug

report. In the collected bug reports, there are a few cases that the bug reports are

associated with "ssl", and our tool identified the longer ones. Since an identification is

considered to be correct only if the correct configuration is in the first 10 of the identified

ones, those are all considered incorrect identifications. Correct identification of such

configurations is a direction for future improvement of the tool, where it should not only

consider a bag of words but may also consider semantic of the text.

Table 19. Accuracy of relating a configuration bug report with a configuration
 Mozilla Apache MySQL

Accuracy 0.92 0.88 0.74

www.manaraa.com

56

Chapter 4

Conclusions and Future Work

This chapter draws conclusions based on the results and analyses discussed in

Chapter 3 and outlines future work to improve classification and configuration

identification performances.

4.1 Conclusions

In this study, a tool is developed that can classify configuration bug reports and

extract configuration options. It involves two steps. The first step trains classification

models on the labeled bug reports to predict a given unlabeled bug report as being either

a configuration or non-configuration bug report. The second step employs natural

language processing and information retrieval to extract configuration options from the

identified configuration bug reports. A total of 900 bug reports from three open source

projects are used for the study. The results show that the approach adopted in the study

discriminates configuration bug reports from non-configuration bug reports with high

accuracy, and that it is effective at extracting configuration options.

The study also compares three machine learning software packages in classifying

bug reports. NLTK’s classifiers are more sensitive to the different methods used to

extract features; using high information words and bigrams as features works better in

most NLTK classifiers used in this study. Sklearn classifiers are moderately affected by

the methods used; however, its SVM classifier performs much better with HIW/HWB

than AW. Weka classifiers do not show much difference using AW or HIW/HWB; in fact,

www.manaraa.com

57

its Logistic Regression classifier works much better with AW but takes much longer time

to complete.

The classifiers are also compared. ZeroR has no prediction power and is used as

baseline classifier. Maxent is very sensitive to the method used; when using HIW/HWB it

performs its best and the time spent in classification is much shorter than using AW.

SVM is also sensitive to the methods used, especially the one implemented in Sklearn.

Naïve Bayes is somewhat affected by the methods used, in particular the NLTK Naïve

Bayes; but generally its performance is quite good, sometimes better than Decision Tree

and the time spent is generally shorter than Decision Tree. Logistic Regression generally

performs best in terms of the performance metric numbers, but it is rather slow. In

general, all the classifiers perform much better than the baseline ZeroR. Exceptions are in

Maxent and NaiveBayes when they are used to predict Mozilla bug reports using AW. In

that case, their prediction ability seems to deteriorate to that of ZeroR, blindly labeling all

bug reports to be one type.

4.2 Future Work

The current research shows promising results in using NLP and machine learning

techniques to characterize configuration bug reports. However, there are improvements to

make to the current characterization framework, and this will be the future work.

We saw that on Apache bug reports, using HIW/HWB improved the

performances of the classifiers significantly, especially the NLTK classifiers, while there

was not much difference using AW or HIW/HWB on MySQL bug reports. Study of the

bug reports revealed that MySQL bug reports contained much information that was

www.manaraa.com

58

irrelevant to the type of the bug reports; however, the irrelevant words occurred many

times, which made them appear to be important and thus they entered into the high

information words list. This irrelevant information is considered one of the possible

reasons that lead to the little to no improvement in classification using HIW/HWB. Thus,

one part of the future work will be to clean the bug reports first before performing any of

the operations in the current research.

In this research, for each open source project, only 135 bug reports of each type

are used for training and 15 bug reports of each type are used for testing in the 10-fold

cross validation, and in the 20x5 training and testing validation, 120 bug reports of each

type are used for training and 30 bug reports of each type are used for testing. Although

these numbers are considered enough for machine learning [8], generally the more data

there are the better. In addition, considering the potential great differences in words and

phrases used in one bug report as compared to those in another, using more bug reports

for training and testing will capture more information, improve the classifiers’

performance and make the testing results more convincing. This will be another part of

the future research work. To make this part of the work more conclusive, it may need to

study how the classifiers’ performance metrics vary as the numbers of the bug reports for

training and testing are increased. It is possible there is a maximum in the number of bug

reports beyond which further increase in bug reports does not improve classifiers’

performance much. If that number can be found, then there is no need to look for more

bug reports to improve classification performance, and we are confident that the results

we have reflect the true performance of the classifiers.

www.manaraa.com

59

In addition to varying the number of the bug reports, it is also necessary to include

the bug reports from more software projects, both open software and proprietary, to make

the results generalizable.

The configuration identification part of the current research has its limitations. As

discussed in 3.3.2, for configurations with varying words, the configuration identification

tool tends to choose the configuration with more words, even though the shorter one is

the correct configuration. Improvement on this may involve considering the sematic of

the bug reports, synonyms and using n-gram. The n in n-gram is greater than two since

unigram and bigram have already been used.

The last part of the future work is to combine the currently discrete parts of the

code into a fully integrated software piece. These parts include the code to generate pure

text from the bug reports URLs, the code to perform classification, and the code to

calculate Tfidf values of the configuration bug reports and output the most closely

associated configurations, etc. It would be desirable to include Weka classifiers in the

python code rather than in a separate Java code. This involves fully understanding the

current difficulties in calling Weka classifiers from the python code and finding an

alternative solution. To make the integrated tool more user friendly, it can provide the

user with the option to choose which classifier(s) he/she wants to use for classification.

www.manaraa.com

60

Appendix

Figures that compare the configuration and non-configuration F-measure between

the classifiers

(a) Configuration F-measure

(b) Non-configuration F-measure
Figure A1. Apache F-measure comparison with 10x10 CV using NLTK.

www.manaraa.com

61

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A2. Apache F-measure comparison with 10x10 using Sklearn

www.manaraa.com

62

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A3. Apache F-measurement comparison with 20x5 training-and-testing using

NLTK

www.manaraa.com

63

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A4. Apache F-measurement comparison with 20x5 training-and-testing using

Sklearn.

www.manaraa.com

64

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A5. Apache F-measure comparison with 10x10 CV using Weka.

www.manaraa.com

65

(a) Configuration F-measure

Non-configuration F-measure

Figure A6. Mozilla F-measure comparison with 10x10 CV using NLTK

www.manaraa.com

66

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A7. Mozilla non-configuration F-measure comparison with 10x10 CV using

Sklearn.

www.manaraa.com

67

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A8. Mozilla F-measure comparison with 20x5 training-and-testing using

NLTK.

www.manaraa.com

68

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A9. Mozilla F-measure comparison with 20x5 training-and-testing using

Sklearn.

www.manaraa.com

69

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A10. Mozilla F-measure comparison with 10x10 CV using Weka.

www.manaraa.com

70

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A11. MySQL F-measure comparison with 10x10 CV using NLTK.

www.manaraa.com

71

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A12. MySQL F-measure comparison with 10x10 CV using Sklearn.

www.manaraa.com

72

(a) Configuration F-measure

.

(b) Non-configuration F-measure

Figure A13. MySQL F-measurement comparison with 20x5 training-and-testing

using NLTK

www.manaraa.com

73

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A14. MySQL F-measurement comparison with 20x5 training-and-testing

using Sklearn.

www.manaraa.com

74

(a) Configuration F-measure

(b) Non-configuration F-measure

Figure A15. MySQL F-measure comparison with 10x10 CV using Weka.

www.manaraa.com

75

References

1. Smith, B. "An approach to graphs of linear forms." Referencia de un trabajo no

publicado), sin publicar (1982).

2. Yin, Zuoning, et al. "An empirical study on configuration errors in commercial and

open source systems." Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles. ACM, 2011.

3. Rastkar, Sarah, Gail C. Murphy, and Gabriel Murray. "Automatic summarization of

bug reports." IEEE Transactions on Software Engineering40.4 (2014): 366-380.

4. Dommati, Sunil Joy, Ruchi Agrawal, and S. Sowmya Kamath. "Bug Classification:

Feature Extraction and Comparison of Event Model using Naive Bayes

Approach." arXiv preprint arXiv:1304.1677 (2013).

5. Wang, Xiaoyin, et al. "An approach to detecting duplicate bug reports using natural

language and execution information." Proceedings of the 30th international

conference on Software engineering. ACM, 2008.

6. Padberg, Frank, Philip Pfaffe, and Martin Blersch. "On Mining Concurrency Defect-

Related Reports from Bug Repositories."

7. Kim, Dongsun, et al. "Where should we fix this bug? a two-phase recommendation

model." IEEE transactions on software Engineering 39.11 (2013): 1597-1610.

8. Gegick, Michael, Pete Rotella, and Tao Xie. "Identifying security bug reports via text

mining: An industrial case study." 2010 7th IEEE Working Conference on Mining

Software Repositories (MSR 2010). IEEE, 2010.

www.manaraa.com

76

9. Rastkar, Sarah, Gail C. Murphy, and Gabriel Murray. "Automatic summarization of

bug reports." IEEE Transactions on Software Engineering40.4 (2014): 366-380

10. Sureka, Ashish. "Learning to classify bug reports into components." International

Conference on Modelling Techniques and Tools for Computer Performance

Evaluation. Springer Berlin Heidelberg, 2012.

11. Matter, Dominique, Adrian Kuhn, and Oscar Nierstrasz. "Assigning bug reports using

a vocabulary-based expertise model of developers." 2009 6th IEEE International

Working Conference on Mining Software Repositories. IEEE, 2009.

12. Briand, Lionel C., Yvan Labiche, and Xuetao Liu. "Using machine learning to

support debugging with tarantula." The 18th IEEE International Symposium on

Software Reliability (ISSRE'07). IEEE, 2007.

13. Zimmermann, Thomas, Rahul Premraj, and Andreas Zeller. "Predicting defects for

eclipse." Predictor Models in Software Engineering, 2007. PROMISE'07: ICSE

Workshops 2007. International Workshop on. IEEE, 2007.

14. Lamkanfi, Ahmed, et al. "Predicting the severity of a reported bug." 2010 7th IEEE

Working Conference on Mining Software Repositories (MSR 2010). IEEE, 2010.

15. Turhan, Burak, Gozde Kocak, and Ayse Bener. "Data mining source code for locating

software bugs: A case study in telecommunication industry." Expert Systems with

Applications 36.6 (2009): 9986-9990.

16. Chowdhury, Gobinda G. "Natural language processing." Annual review of

information science and technology 37.1 (2003): 51-89.

17. Grefenstette, Gregory, and Pasi Tapanainen. "What is a word, what is a sentence?:

problems of Tokenisation." (1994): 79.

www.manaraa.com

77

18. Wilbur, W. John, and Karl Sirotkin. "The automatic identification of stop

words." Journal of information science 18.1 (1992): 45-55.

19. Ahmed, Shabbir, and Farzana Mithun. "Word Stemming to Enhance Spam

Filtering." CEAS. 2004.

20. Brill, Eric. "Part-of-speech tagging." Handbook of natural language

processing (2000): 403-414.

21. Plisson, Joël, Nada Lavrac, and Dunja Mladenic. "A rule based approach to word

lemmatization." Proceedings C of the 7th International Multi-Conference Information

Society IS 2004. Vol. 1. No. 1. 2004.

22. Arellano, Andres, Edward Carney, and Mark A. Austin. "Natural Language

Processing of Textual Requirements." The Tenth International Conference on

Systems (ICONS 2015), Barcelona, Spain. 2015.

23. Fukumizu, Kenji, Francis R. Bach, and Michael I. Jordan. "Dimensionality reduction

for supervised learning with reproducing kernel Hilbert spaces." Journal of Machine

Learning Research 5.Jan (2004): 73-99.

24. Gawade, Trunal. "Feature Extraction using Text mining." International Journal Of

Emerging Technology and Computer Science 1.2 (2016).

25. Lee, Changki, and Gary Geunbae Lee. "Information gain and divergence-based

feature selection for machine learning-based text categorization." Information

processing & management 42.1 (2006): 155-165.

26. Liu, Huan, and Rudy Setiono. "Chi2: Feature selection and discretization of numeric

attributes." ICTAI. 1995.

www.manaraa.com

78

27. Tan, Chade-Meng, Yuan-Fang Wang, and Chan-Do Lee. "The use of bigrams to

enhance text categorization." Information processing & management 38.4 (2002):

529-546.

28. Sebastiani, Fabrizio. "Machine learning in automated text categorization." ACM

computing surveys (CSUR) 34.1 (2002): 1-47.

29. Kotsiantis, Sotiris B., I. Zaharakis, and P. Pintelas. "Supervised machine learning: A

review of classification techniques." (2007): 3-24.

30. Gentleman, R., and V. J. Carey. "Unsupervised machine learning." Bioconductor

Case Studies. Springer New York, 2008. 137-157.

31. Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.

Vol. 1. No. 1. Cambridge: MIT press, 1998.

32. Murphy, Kevin P. "Naive bayes classifiers." University of British Columbia(2006).

33. Safavian, S. Rasoul, and David Landgrebe. "A survey of decision tree classifier

methodology." (1990).

34. Hosmer, David W., and Stanley Lemeshow. "Introduction to the logistic regression

model." Applied Logistic Regression, Second Edition (2000): 1-30.

35. Liu, Ting, et al. "Semantic role lableing system using maximum entropy

classifier." Proceedings of the Ninth Conference on Computational Natural Language

Learning. Association for Computational Linguistics, 2005.

36. Witten, Ian H., et al. "Weka: Practical machine learning tools and techniques with

Java implementations." (1999).

37. Wang, Fu, Jiazheng Xu, and Zhide Liang. "Maximum Entropy Method." Textures

and Microstructures 19 (1992): 55-58.

www.manaraa.com

79

38. Mount, John. "The equivalence of logistic regression and maximum entropy

models." URL: http://www. win-vector. com/dfiles/LogisticRegressionMaxEnt.

pdf (2011).

39. Bird, Steven. "NLTK: the natural language toolkit." Proceedings of the

COLING/ACL on Interactive presentation sessions. Association for Computational

Linguistics, 2006.

40. Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." Journal of

Machine Learning Research 12.Oct (2011): 2825-2830.

41. Hall, Mark, et al. "The WEKA data mining software: an update." ACM SIGKDD

explorations newsletter 11.1 (2009): 10-18.

42. Kirkby, Richard, Eibe Frank, and Peter Reutemann. "WEKA Explorer User Guide for

Version 3-5-6." (2007).

43. Scuse, David, and Peter Reutemann. "Weka experimenter tutorial for version 3-5-

5." University of Waikato (2007).

44. Bouckaert, Remco R., et al. "WEKA Manual for Version 3-7-8." Hamilton, New

Zealand (2013).

45. https://en.wikipedia.org/wiki/Scikit-learn.

46. Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet

allocation." Journal of machine Learning research 3.Jan (2003): 993-1022.

47. http://www.nltk.org/book/

48. Van Halteren, Hans, Jakub Zavrel, and Walter Daelemans. "Improving accuracy in

word class tagging through the combination of machine learning

systems." Computational linguistics 27.2 (2001): 199-229.

www.manaraa.com

80

49. Davis, Jesse, and Mark Goadrich. "The relationship between Precision-Recall and

ROC curves." Proceedings of the 23rd international conference on Machine learning.

ACM, 2006.

50. Powers, David Martin. "Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation." (2011).

51. Krogh, Anders, and Jesper Vedelsby. "Neural network ensembles, cross validation,

and active learning." Advances in neural information processing systems 7 (1995):

231-238.

52. Glantz, Stanton A. "Primer of biostatistics." (2002): 246.

53. Anderson, David R., Kenneth P. Burnham, and William L. Thompson. "Null

hypothesis testing: problems, prevalence, and an alternative." The journal of wildlife

management (2000): 912-923.

54. Box, George EP, William Gordon Hunter, and J. Stuart Hunter. "Statistics for

experimenters." (1978).

55. Moore, David S. The basic practice of statistics. Vol. 2. New York: WH Freeman,

2007.

56. Jin, Dongpu, et al. "Configurations everywhere: Implications for testing and

debugging in practice." Companion Proceedings of the 36th International Conference

on Software Engineering. ACM, 2014.

57. http://snowball.tartarus.org/algorithms/lovins/stemmer.html

58. Michael Gegick, Pete Rotella, Tao Xie. Identifying Security Bug Reports via Text

mining: An Industry Case Study. InMining software repositories (MSR), 2010 7th

IEEE working conference on 2010 May 2 (pp. 11-20). IEEE.

www.manaraa.com

81

59. Kratz, Marie, and Sidney I. Resnick. "The QQ-estimator and heavy tails." Stochastic

Models 12.4 (1996): 699-724.

www.manaraa.com

82

VITA

Wei Wen was born in Chengdu, SiChuan, China.

Education:

M.S. in Electrical Engineering, University of Kentucky Jul. 2010

Ph.D. in Materials Science and Engineering, University of Kentucky Dec. 2004

Conference Publications:

1. Wei Wen, Tingting Yu, Jane Hayes: "CoLUA: Automatically Predicting

Configuration Bug Reports and Extracting Configuration Options",

In International Symposium on Software Reliability Engineering (ISSRE), 2016

2. Tingting Yu, Wei Wen, Xue Han, Jane Hayes, "Predicting Testability of

Concurrent Programs", In Proceedings of the 9th International Conference on

Software Testing, Verification and Validation (ICST), Pages 168-179, 2016.

	Using Natural Language Processing and Machine Learning Techniques to Characterize Configuration Bug Reports: A Study
	Recommended Citation

	TITLE
	ABSTRACT OF THESIS
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	Introduction
	CHAPTER 2
	Background and Related Work
	2.1 Software Bugs, Bug Reports and Related Research
	2.1.1 Software Bugs and Bug Reports
	2.1.2 Related Work
	2.1.3 Contributions of This Research

	2.2 Natural Language Processing
	2.2.1. Tokenization, Lemmatization and Stopwords
	2.2.2. Feature Extraction

	2.3 Machine Learning and Its Tools
	2.3.1. Classifiers in Machine Learning
	2.3.1.1 ZeroR
	2.3.1.2 Naïve Bayes
	2.3.1.3. Decision Tree
	2.3.1.4 Logistic Regression
	2.3.1.5. Maxent

	2.3.2. Machine Learning Tools
	2.3.2.1. Weka
	2.3.2.2. Sklearn
	2.3.2.3. NLTK

	2.3.3. Performance Evaluation Metrics for Classification
	2.3.3.1. Accuracy
	2.3.3.2. Precision and Recall
	2.3.3.3. F-measure

	2.3.4. Common Practices in machine learning
	2.3.4.1. Cross-Validation
	2.3.4.2. Statistic Tests
	2.3.4.2.1. T-test
	2.3.4.2.2. F-test

	Chapter 3
	Predicting Configuration Bug Reports and Extracting Configuration Options
	3.1 Motivation of the Study
	3.2. Experiment Design and Setup
	3.2.1. Experiment Design
	3.2.2. Experiment Setup
	3.2.2.1 Data for Classification
	3.2.2.2 Cross Validation
	3.2.2.3. Statistical Significance Test

	3.3. Results and Analyses
	3.3.1 Classification of Bug Reports into Configuration and Non-configuration Related
	3.3.2 Identification of a configuration associated with a configuration bug report

	Chapter 4
	Conclusions and Future Work
	4.1 Conclusions
	4.2 Future Work

	Appendix
	References
	VITA

