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ABSTRACT OF THESIS 
 
 
 

USING NATURAL LANGUAGE PROCESSING AND MACHINE 
LEARNING TECHNIQUES TO CHARACTERIZE CONFIGURATION 

BUG REPORTS: A STUDY 

In this study, a tool is developed that achieves two purposes: (1) given bug 
reports, it identifies configuration bug reports from non-configuration bug reports; (2) 
once a bug report is identified to be a configuration bug report, the tool finds out what 
specific configuration option the bug report is associated.  

This study starts with a review of related works that used machine learning tools 
to solve software bug and bug report related issues. It then discusses the natural language 
processing and machine learning techniques. Afterwards, the development process of the 
proposed tool is described in detail, including the motivation, the experiment design and 
setup, and results analysis. In order to evaluate the effectiveness of the tool, both cross-
validation and a similar validation technique are performed. Results show that the tool is 
effective at both identifying configuration bug reports and the associated configuration 
options for the identified bug reports. 

This study proves the usefulness of machine learning techniques in solving bug 
report related issues. It also shows that configuration and non-configuration bug reports 
have different characteristics that can be learned by machine learning tools.  The 
developed tool can be improved in a number of areas to make it more effective. 
 
KEYWORDS: Configuration Bug Reports, Natural Language Processing, Machine 
Learning, Weka, NLTK, Scikit-Learn 
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CHAPTER 1  

Introduction 

 

As software technology advances, software products become more and more 

complex, and correspondingly maintenance is becoming more expensive and challenging. 

Maintenance costs account for more than two thirds of the life cycle costs of software 

products [1]. Essential maintenance activities include bug reporting and bug fixing. In 

order to facilitate bug maintenance, organizations use bug-tracking systems for users to 

submit bug reports, and for developers to collect bug information in order to fix bugs. 

Bug fixing involves both analyzing bug reports and modifying code to fix the bugs. 

Analyzing bug reports can be tedious and time-consuming, since bug reports can be 

lengthy and the description can be hard to understand. However, analysis is a very crucial 

step for developers to move closer to bug fixing. Thus, making this step efficient and 

effective can greatly reduce the maintenance cost. 

Meanwhile, software engineering has advanced so much that nowadays medium 

to large software systems generally have many configuration options for users to 

customize in order to meet their needs. For example, users can augment their Mozilla 

browsers with sophisticated add-ins, change their Eclipse build settings (i.e., 

configuration options) to use different versions of the JDK or specified libraries 

depending on the project, build a specific Linux kernel configuration, etc. While such 

customizability provides benefit to users, the complexity of the configuration space and 

the sophisticated constraints among configuration settings complicates the process of 

testing and debugging. Thus, it is not surprising that many configuration bugs remain 
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undetected and later surface in the field. A study by Yin et al. [2] shows that up to 31% of 

bugs are related to misconfiguations in several open source and commercial software 

systems [2], where a majority of misconfigurations (up to 85.5%) are due to mistakes in 

setting configuration options. 

A developer who is assigned to a given bug report first needs to determine the 

type of the bug, i.e., whether this bug is configuration-related or not. The next step is to 

use the anomalous configuration options to reproduce the bug. However, developers with 

insufficient domain knowledge may incorrectly label a bug report or spend time 

determining the bug type (time that could have been well spent elsewhere). In addition, to 

understand the bug, developers often need to look through the bug descriptions, which 

can be lengthy, verbose, and involve multiple developers and users. In fact, Rastkar et al. 

found that almost one third of the bug reports in the open source projects Firefox, 

Thunderbird, and Eclipse Platform in the 2011-2012 period were 300 words or longer 

(deemed lengthy) [3]. 

Furthermore, it is often non-trivial to determine which configuration options are 

relevant in order to reproduce a bug. For example, if a developer knows that a bug report 

describes a configuration bug related to javascript in a browser application, he/she may 

not be able to quickly determine what the real name of the configuration option is in the 

configuration database (e.g., Browser.urlbar.filter.javascript). If the developer wants to 

fix this bug, he/she may spend an exorbitant amount of time searching through the 

configuration database to find which option is relevant. 
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Therefore, there is a need for an effective technique to reduce the manual effort 

required to label configuration bug reports and to identify the root cause configuration 

options. This need inspired many researchers to study bug reports to find out useful bug 

information in order to localize and fix the bugs. With the increasing popularity of 

machine learning and its successful use in many applications, studying bug reports using 

machine learning techniques has also gained popularity and proven effective.  

In this study, a framework is developed that aims to improve configuration-aware 

techniques and help ease developers’ process of debugging and reproducing bugs that 

need specific configurations for exposition. It focuses on configuration bugs due to 

incorrect settings of configuration options. Given a bug report, it determines whether it is 

a configuration bug, and if it is, the approach suggests configuration options to help 

developers reproduce the bug. It provides at least two benefits. First, developers can label 

configuration bug reports in an automated and timely manner. Second, with the 

configuration query component, it allows developers to approximate configuration 

options that are relevant to the bugs. This can improve the configuration debugging and 

diagnosis process. 
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CHAPTER 2 

Background and Related Work 

This chapter presents the background knowledge in terms of software bugs, bug 

reports, natural language processing and machine learning, and discusses related work 

that used either or both natural language processing and machine learning to study 

software bugs and/or bug reports. 

2.1 Software Bugs, Bug Reports and Related Research 

This section gives brief definitions of software bugs and bug reports, and stresses 

the importance of studying them in order to put the ever-increasing software bugs under 

control. It also discusses related research activities at both the software bugs level and the 

bug reports level, and compares them with this research work. 

2.1.1 Software Bugs and Bug Reports 

A software bug is an error, flaw, failure, or fault in a computer program that 

causes the program to produce incorrect results, or to behave in an unintended way, even 

crash. As discussed in Chapter 1, software bugs are prevalent, and with the increasing 

number and complexity of software systems, both the amount and the types of bugs are 

growing too. Tremendous effort has been put into classifying bug reports, identifying and 

fixing bugs, as can be seen by the large volume of papers devoted to software bug/bug 

report research [4-15]. 

Software bug reports are plain text that can contain the error log, the steps to 

reproduce the bug, and the product, version, platform, and operating system information. 

To help track the progress of a bug report, it may be labeled as new, confirmed, 
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duplicated, fixed, closed, etc. A good bug report should be specific about the problem, 

and provide information that is as comprehensive as possible. However, there is no 

effective way to prevent bug reporters from writing free flowing, long bug reports with 

much extraneous information. Thus, having a tool that can extract useful information 

from these kinds of bug reports will be very useful. 

2.1.2 Related Work 

With the prevalence of software bugs, it is not surprising that there is much 

related research work. Researchers have been approaching the problems both from the 

code level and from the bug report level. On both levels, using machine learning 

techniques has become a common practice. 

On the bug report level, researchers have been performing a lot of analyses on 

bug reports for all kinds of purposes. Dommati et al. [4] used machine learning tools to 

help identify duplicate bug reports so that less time is needed to classify the bug reports. 

Wang et al. [5] also studied duplicate bug reports. They used natural language and 

execution information to help detect duplicate reports. When a new bug report arrives, its 

natural language information is compared with existing ones, and the most similar 

existing bug reports are presented to the person in charge of marking a bug report as 

duplicate. Padberg and Pfaffe [6] studied the classification of concurrency bug reports on 

MySQL and Apache by applying keyword search and machine learning. For 

classification, they used a linear classifier and a neural network classifier and obtained 

encouraging results. Kim and Kim [7] proposed a two-phase prediction model that used 

information from bug reports to suggest the locations of the software that are likely to 

need fixing. They used the bag of words approach in NLP to extract word tokens from 
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bug reports to identify features, and then used the features in machine learning as input to 

train classifiers or to predict which location of the software needs to be fixed. Gegick et 

al. [8] applied text mining on bug reports to classify security bug reports. They trained 

the machine learning model on already manually and correctly labeled bug reports, and 

then used the trained model to identify security bug reports that were manually 

mislabeled as security bug reports. Evaluation of their models on a large Cisco software 

system showed moderately to high successful classification rates. Rastkar and Murphy [9] 

compared a few text mining classifiers called Email Classifier, Email and Meeting 

Classier, and their own Bug Report Corpus classifier based on which generates the most 

accurate bug report summaries. This is very helpful to developers since bug reports can 

be lengthy and loose; using classifiers that can generate concise and accurate summaries 

greatly alleviate developers’ responsibilities. Sureka [10] studied bug reports by splitting 

them into components such as product name, version number, etc. and used machine 

learning tools to categorize bug reports into predefined lists of components and predict 

whether a given bug report is likely to be reassigned. His result shows the presence of 

correlation between terms in bug reports and components which can be exploited for the 

task of predicting the correct component of a bug report. Matter et al. [11] proposed an 

approach to automatically match and assign bug reports to the developers who have the 

expertise to work on the bugs. They compared the vocabulary used by a developer in 

his/her code with the vocabulary used in bug reports using a machine learning approach, 

and depending on how similar the vocabularies are, they recommend to assign or not 

assign a bug report to a developer.   
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On the code level, there are also many research activities. Briand et al. [12] 

applied machine learning techniques in identifying bugs in the code. They used C4.5 

decision trees to identify various failure conditions based on information regarding the 

test cases’ inputs and outputs. Their results showed improvement over their original 

technique. Zimmermann et al. [13] used Eclipse for their study, mapped the defects in its 

bug database to its source code locations, and built the bug data set and a description of 

its contents. They used logistic regression to train and classify the likelihood of a 

file/package as defect-prone. Lamkanf et al. [14] proposed a text mining approach to 

predict the severity of a bug report. Evaluation of their approach on three open source 

software products shows that using text mining for the prediction can achieve moderate 

to high accuracy. Turhan et al. [15] also used a machine learning approach to mine source 

code for locating and predicting software bugs. Compared to a non-machine learning, 

rule-based model which requires inspection of 45% of the source code, their machine 

learning-based model suggested that 70% of the defects could be detected by inspecting 

only 3% of the code. This suggests that a machine learning approach is a more practical 

and efficient way to identify bugs. 

2.1.3 Contributions of This Research 

Compared to the research activities discussed in 2.1.2, the current research is a 

study of using machine learning techniques to mine useful information from bug reports. 

Thus, it belongs to the first type of research activities. However, while the activities 

discussed in 2.1.2 encompass many areas, such as the duplicate bug reports, the security 

related bug reports, the concurrency bug reports, etc., this research is different in that it 

studies configuration bug reports, identifies them from non-configuration bug reports, 
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and finds the configuration options with which the bug reports are associated. It compares 

how the different software packages, machine learning classifiers, as well as the feature 

extraction techniques affect the learning outcomes. It takes into account the unique 

characteristics of bug reports, that is, different bug reports can contain very different 

words, and validates the classifiers’ performance using a technique similar to cross 

validation. It does this by using only the training bug reports’ features for training, since 

in reality if a trained classifier is used for testing, it will not be able to know the testing 

bug reports beforehand. It compares the classifiers’ performances with using cross 

validation and with using this technique, and finds that there is generally a small decrease 

in performance using only the training bug reports for training. However, this is a more 

realistic use of a classifier in classifying bug reports. 

This research also utilizes the NLP techniques to extract configuration options 

that are likely associated with a configuration bug report. It builds a corpus of 

configurations. Each configuration is considered a document in the corpus. It processes a 

configuration into a list of words by splitting the configuration according to the token 

used to connect the words together. By using a configuration as a document rather than a 

bug report, it greatly reduces the size of the corpus, and makes the configuration 

identification process faster. 

The two-step processes developed in this study, i.e., configuration bug report 

identification and configuration option identification is very useful for a developer who is 

assigned to work on the bug. Being able to find out that the bug described in the bug 

report is configuration-related, and to further identify the associated configuration(s) will 

greatly shorten the developer’s bug fixing time. 
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2.2 Natural Language Processing 

Natural Language Processing (NLP) [16] is a computer science field of study that 

evolved from artificial intelligence and computational linguistics, among others.  It 

involves the understanding of human languages and thus enabling computers to derive 

meaning from human or natural language input as well as to generate natural language 

and to translate between different languages. In this study, NLP is used to process bug 

reports, including the extraction of words, identification and removal of common and 

unimportant words (stop words), word tokenization, and lemmatization/stemmerization. 

Only after the proper NLP processing can we perform machine learning operations to 

learn and predict the types of bugs described in bug reports. NLP is also used in this 

study to identify the specific configuration(s) (the name of a configuration) associated 

with a bug report.  

2.2.1. Tokenization, Lemmatization and Stopwords  

The basic steps involved in NLP are word/sentence tokenization [17], stopword 

removal [18], stemming [19], part-of-speech tagging [20], lemmatization [21], and 

chunking and chinking [22]. In this work, some of these steps are employed to convert 

bug reports into a “bag of words” in preparation for machine learning. 

Tokenization is the process of splitting paragraphs into sentences or splitting 

sentences into words. Words are frequently used as features in machine learning, 

specifically text mining. Thus, word tokenization is often necessary.  After tokenization, 

there are still many common words which do not convey much meaning and should be 

removed. These are called stopwords, and they include words such as “the”, “this”, “a”, 

“is”. Removing stopwords reduces the dimensionality of the features (words) in machine 
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learning. Dimensionality of the features in this study is the number of words (features) 

used in machine learning. Dimensionality reduction [23] reduces the time and storage 

needed. It also improves the performance of the classifiers by removing multi-collinearity. 

To further reduce the dimensionality, stemming or lemmatization is performed. 

Stemming is the process of removing the ends of a derived word to hopefully get its root 

form. However, because of its simplicity, the transformed token may not be a 

linguistically correct word. Lemmatization, on the other hand, always returns the true 

root form of a word. In order for lemmatization to work correctly, the original word has 

to be tagged, which means that the word needs a tag to identify it as a noun, verb, or other 

part of speech so that lemmatization can restore the word to its correct root form. Since 

we use NLTK for this work, the stopwords are from NLTK's "corpus" package, and the 

lemmatization is from NLTK's "stem.wordnet" module. 

2.2.2. Feature Extraction  

In text mining, feature extraction [24] generally means extracting words as 

features from text. The steps discussed in section 2.2.1 are some of the essential ones to 

extract features for machine learning. In this section, we only concentrate on two 

additional techniques that will eliminate noisy features and reduce feature dimensionality, 

i.e., information gain with chi-sq and bigram. 

Information gain [25] is a measure of how common a word is in a particular class 

(label) compared to how common it is in other classes (labels). In order to extract high 

information features, information gain needs to be calculated for each word. Chi-sq [26] 

can be used to score the commonness of a word in a class. The higher the score, the more 

likely the word is to be associated with the class. For simplicity, assume that there are 
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bug reports of two classes t1 and t2 (e.g., configuration vs. non-configuration in this 

study). Let nii be the counts that the word (say w) in consideration occurs in bug reports 

of class t1, nio be the counts that w occurs in reports of t2, noi be the counts of all words 

except w that occur in reports of class t1, noo be the counts of all words except w that 

occur in class t2, and nxx be the counts of all words that occur in reports of both types. 

The Chi-sq score that shows how likely this word is associated with type t1 is calculated 

as: 

𝐶𝐶ℎ𝑖𝑖_𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑛𝑛𝑥𝑥𝑥𝑥 × (𝑛𝑛𝑖𝑖𝑖𝑖 × 𝑛𝑛𝑜𝑜𝑜𝑜 − 𝑛𝑛𝑖𝑖𝑜𝑜 × 𝑛𝑛𝑜𝑜𝑖𝑖)2

(𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑖𝑖𝑜𝑜) × (𝑛𝑛𝑖𝑖𝑖𝑖 +  𝑛𝑛𝑖𝑖𝑜𝑜) × (𝑛𝑛𝑖𝑖𝑜𝑜 + 𝑛𝑛𝑜𝑜𝑜𝑜) × (𝑛𝑛𝑖𝑖𝑜𝑜 +  𝑛𝑛𝑜𝑜𝑜𝑜)
 

The score that shows how likely w is associated with class t2 can be calculated 

similarly.  

Bigram [27] identifies two words that are likely to co-occur. For example, if a bug report 

contains "not configuration," it indicates that this report is not related to configuration 

bugs.  If individual words are used as the only features, this report may be incorrectly 

classified as configuration-related. Thus, including bigrams increases the chance of 

correctly classifying bug reports. The likelihood of two words occurring together is 

calculated using chi-sq. The only change is that now instead of the association between a 

word and a label, the association is between two words. 

2.3 Machine Learning and Its Tools 

Machine learning [28] grew out of artificial intelligence, and is an 

interdiscipline of computer science and statistics. It started from people’s quest to build a 

system that can learn and improve from experience, and thus be used for all kinds of 
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tasks. It has been used successfully in many fields, such as speech recognition, computer 

vision, e-commerce, etc. Other fields, from biology to control theory, have also shown 

increasing interest in how their systems can automatically adapt or optimize to their 

environment. With the exponential increase in online data, machine learning is becoming 

very popular to detect hidden patterns to support business success and to make users’ 

online experience easier and more enjoyable.  

With the successful application of machine learning in many fields and the 

pressing needs in software engineering to tackle the growing number of software bugs, 

recently machine learning has been gaining immense popularity in bug prediction and 

bug report classifications. This research takes advantage of the general usefulness of 

machine learning in problem solving and the prevalence of configurations in software as 

well as the need to put the ever increasing number of bugs under control. It utilizes 

machine learning tools to identify configuration bug reports based on known or labeled 

configuration/non-configuration bug reports. Although machine learning itself may be 

utilized for different purposes, the next step after processing text data with NLP is often 

to run machine learning tools on the processed data so that useful results can be extracted 

from the data. In our study, we use machine learning to build classifiers from labeled bug 

reports and use them to help identify a new bug report as configuration-related or non-

configuration-related. 

2.3.1. Classifiers in Machine Learning 

There are three types of machine learning: supervised machine learning [29], 

unsupervised machine learning [30] and reinforcement learning [31]. In supervised 
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learning, there are labeled examples for the system to learn. A learned classifier is then 

constructed from the labeled examples, which are then used to label new inputs. In 

unsupervised learning, there are no labels in the given input data. The systems are 

supposed to detect patterns from the input data. Because of this, there is no obvious error 

metric to use to evaluate the classifiers. Reinforcement learning is useful in learning how 

to react given occasional reward or punishment signals.  It finds uses in other disciplines 

such as game theory and genetic algorithms. In this work, we focus on supervised 

machine learning only. 

There are many supervised machine learning algorithms (or classifiers) in use 

today. Popular ones include Naïve Bayes [32], Decision Trees [33], and Logistic 

Regression [34]. All these classifiers are generally used in natural language processing 

and text mining. The Maximum Entropy Classifier [35] is also commonly used and is 

provided in NLP.  In addition to these classifiers, in order to establish a baseline classifier 

with which to compare, the simplest classifier, i.e., ZeroR [36], is also in use. 

2.3.1.1 ZeroR 

During training, ZeroR ignores the features and relies only on the labels for 

predicting. Although it does not have much predicting capability, it establishes the lowest 

possible predictability that a classifier can have. It works by constructing a frequency 

table for the labels in the training data and selects the most frequent values of the testing 

data in predicting. 

2.3.1.2 Naïve Bayes 

Naïve Bayes classifier uses Bayes algorithm and is statistic-based. In order to find 

the label (in our case, the configuration or non-configuration type of a bug report), it uses 
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the Bayes rule to represent P(label|features) in terms of P(label) and P(features|label), as 

shown below: 

𝑃𝑃(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙|𝑓𝑓𝑠𝑠𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠) =
𝑃𝑃(𝑓𝑓𝑠𝑠𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠|𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙) × 𝑃𝑃(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙)

𝑃𝑃(𝑓𝑓𝑠𝑠𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠)
 

Features are the input to the machine learning classifier. For text mining, they can 

be a bag of words, bigrams, or even trigrams. To simplify the classification work, the 

classifier also makes a “naïve” assumption, i.e., all the features are independent of each 

other. Thus, the above equation can be rewritten as: 

𝑃𝑃(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙|𝑓𝑓𝑠𝑠𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠) =
𝑃𝑃(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙) × 𝑃𝑃(𝑓𝑓1|𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙) × … × 𝑃𝑃(𝑓𝑓𝑛𝑛|𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙)

𝑃𝑃(𝑓𝑓𝑠𝑠𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠)
 

Where f1, f2, … fn are each individual features. 

Although the naïve assumption is never really true, the classification results of 

Naïve Bayes can be quite good, as can be seen by the results shown in Tables 1, 3, 4 and 

5 in 3.3.1). 

2.3.1.3. Decision Tree 

Decision tree is based on a tree structure, where the inner nodes represent the 

decision nodes and the leaf nodes represent the labels assigned. The decision nodes 

decide which branch to take based on the values of the features. Building up a decision 

tree starts with selecting the right features for the decision nodes, and there are a few 

choices in making this decision. The simplest method to pick a decision node is to 

consider all the available features and see which one is most accurate in predicting the 

training data’s label and then use that feature. This is not effective though.  A better 
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choice, and also the generally used one, is to measure how much more organized the 

input becomes after being divided using a given feature. One method to achieve this is to 

use entropy, which is the sum of the probability of each label times the log probability of 

the same label. The feature that achieves the maximum entropy [37] is selected as a 

decision node. Maximum entropy indicates the highest level that can be achieved from 

the initial unorganized input to the most organized input. 

The most noticeable advantage of decision trees is that they are easy to interpret. 

The main disadvantages are that:  (1) they imply ordering of the features as decision 

nodes in the tree structure, even though there may not be any ordering in the features of 

the data; and (2) as the tree descends towards the leaves, there are fewer and fewer data 

available for the training, which easily leads to overfitting. Naïve Bayes does not have 

any of these issues, and may explain the better performance of Naïve Bayes in our results 

as compared to decision trees. 

2.3.1.4 Logistic Regression 

Logistic regression calculates the probability of a label likely to be assigned to a 

bug report when given an input feature set. It uses the Bernoulli distribution function for 

the probability and a sigmoid function for transforming the input: 

𝑝𝑝(𝑦𝑦|𝑥𝑥,𝑤𝑤) =  𝐵𝐵𝑠𝑠𝑠𝑠(𝑦𝑦|𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝑤𝑤𝑇𝑇𝑥𝑥)) 

𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝛼𝛼) ≜
1

1 + exp (−𝛼𝛼)
 

where Ber represents the Bernoulli function, sigm represents the sigmoid function, y is 

the label, x represents the input features, and w is the model's weight vector. Model 
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parameter w is calculated in the training step. In the prediction step, the label with the 

highest probability is assigned to the bug report. 

2.3.1.5. Maxent 

Maxent is also called Maximum Entropy Classifier. It is similar to Naïve Bayes 

except that it uses search techniques to find the features that will maximize the 

performance of classification rather than using probabilities. To search for features, 

Maxent chooses those that contain the fewest unwarranted assumptions, which means the 

maximum entropy in the input. Maxent is equivalent to Logistic Regression [38]. 

2.3.2. Machine Learning Tools 

There are many good open source machine learning tools available. Popular ones 

include Weka [36], NLTK [39], and Sklearn [40]. They are all used in this work because 

each one of them has its own strength. Weka has rich GUI functionalities and abundant 

tools to perform both machine learning and natural language processing. NLTK and 

Sklearn are for use with Python. Because Python is an easy to use language, this makes 

coding using NLTK and Sklearn easy as well. In addition, NLTK has a rich set of natural 

language processing modules, and Sklearn has many classification modules for machine 

learning. We also selected these tools for comparison purposes, to identify the best tool 

for this work. 

2.3.2.1. Weka 

Weka is a well-known suite of machine learning tools developed at the University 

of Waikato, New Zealand [41]. It is written in Java, and contains both command line and 

GUI operations. The GUI interface is easier and more convenient to use, and has three 

applications to suit different needs: Explorer [42], Experimenter [43], and 

https://en.wikipedia.org/wiki/University_of_Waikato
https://en.wikipedia.org/wiki/University_of_Waikato
https://en.wikipedia.org/wiki/New_Zealand
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KnowledgeFlow [44]. Explorer is the easiest to get started with; however, it lacks some 

of the capabilities of Experimenter and KnowledgeFlow. For example, in Explorer, one 

can only perform one cross-validation, while in Experimenter there are more choices, 

such as 10 times cross validation.  In addition, there is no easy way to save the 

classification results in Explorer.  

Experimenter can be used for batches of experiments making it easy to compare 

the performance of different classifiers, and results can easily be saved as csv or arff files. 

Arff is short for Attribute-Relation File Format, and is the only file format that Weka 

recognizes. Although Weka can accept csv files as input, internally the csv files are still 

converted to arff files. 

KnowledgeFlow supports the flow of information from one component to the next. 

The user chooses the components from a large selection.  Components are functional 

blocks that perform certain tasks, such as DataSources, Filters, and Classifiers. In 

KnowledgeFlow, the components form the palette from which the user can select.  

Components can then be put on the canvas (editing screen) and connected together to 

perform processing to meet the specific needs of the user.  

2.3.2.2. Sklearn 

Sklearn, also called scikit-learn, started as a Google Summer of Code project and 

is a library of machine learning algorithms for Python programming [45]. It contains 

various classification, regression, and clustering algorithms, as well as text preprocessing 

facilities, such as TfidfVectorizer which we use to calculate the tfidf scores of words that 

occur in documents.  

https://en.wikipedia.org/wiki/Google_Summer_of_Code
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TFIDF [46] is short for Term Frequency – Inverse Document Frequency. Term 

Frequency (tft,d) is defined as the number of occurrences of a term, t, in the document d. 

If t is not in d, the value of tft,d is zero. Document Frequency (dft) is defined as the 

number of documents in the corpus that contains the term t. If t does not exist in any 

documents in the corpus, dft is equal to zero. The Inverse Document Frequency (idft) is 

used to reduce the effect of terms that appear in many documents; it is defined as: 

𝑖𝑖𝑖𝑖𝑓𝑓𝑡𝑡 = 𝑙𝑙𝑠𝑠𝑠𝑠
𝑁𝑁
𝑖𝑖𝑓𝑓𝑡𝑡

 

where N is the total number of documents in the corpus.  

Thus, from the equation, a large value of dft makes idft small. 

TFIDF is used to measure the importance of a term in a document. If the term 

appears many times in only a few documents, but rarely in other documents, then it will 

have a high TFIDF score. This means that the term is very informative in conveying the 

topic(s) of the few documents in which the term appears. The definition of TFIDF is: 

𝑓𝑓𝑓𝑓 − 𝑖𝑖𝑖𝑖𝑓𝑓𝑡𝑡,𝑑𝑑 = 𝑓𝑓𝑓𝑓𝑡𝑡,𝑑𝑑 × 𝑖𝑖𝑖𝑖𝑓𝑓𝑡𝑡 

2.3.2.3. NLTK 

NLTK stands for Natural Language processing Tool Kit. It was originally 

developed at the University of Pennsylvania, and has since been contributed to by dozens 

of volunteer developers [47]. NLTK is also written in Python and is intended for NLP 

processing using Python.  
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Although NLTK is more often used for NLP, it also contains a few popular 

classifiers for machine learning purposes (for use after the natural language text is 

processed). These include NaiveBayes, DecisionTree, MaxEnt, and others. Since these 

classifiers are native to NLTK, they are easier to use after using NLTK’s natural 

language processing algorithms; the classifiers in Sklearn and Weka have to be called 

from NLTK using NLTK’s Sklearn and Weka wrapper methods. 

2.3.3. Performance Evaluation Metrics for Classification 

In order to pick the best classifier for predicting bug reports not yet labeled, it is 

necessary to have a set of evaluation metrics that can fully examine the performance of a 

classifier. The following metrics are commonly used in machine learning. 

2.3.3.1. Accuracy 

Accuracy [48] is the simplest metric used to evaluate a classifier. It measures the 

percentage of correctly predicted test data over all test data. Accuracy is not a good 

metric: when the two labeled data sets are hugely unbalanced, a bad classifier can blindly 

label every input to be in the majority class and can still achieve very high accuracy. For 

this reason, precision and recall or F-measure are preferred to accuracy. 

2.3.3.2. Precision and Recall 

For binary data (those that have only two labels), one can assume that one label is 

positive and that the other is negative. Even if the data is not binary, we can let the label 

in consideration be the positive label, and all other labels be negative. Precision [48] is 

then called the positive predictive value. It is the percentage of correctly predicted 

positive data (TP) over all predicted positive data. Recall [49], also known as sensitivity, 
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is the percentage of correctly predicted over all positive. Thus, they can be written in the 

following mathematic forms: 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
× 100% 

𝑅𝑅𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
× 100% 

where TP stands for True Positive, FP stands for False Positive, FN stands for False 

Negative, TP+FP is all data that are predicted to be positive, and TP+FN is all positive 

data. 

2.3.3.3. F-measure 

F-measure [50] is a more comprehensive measure of performance as it takes into 

account the effect of both precision and recall and is the harmonic mean of both: 

𝐹𝐹_𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 =
2 × 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 × 𝑅𝑅𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 + 𝑅𝑅𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙

 

2.3.4. Common Practices in machine learning 

Since machine learning is closely related to statistics, learning results need to be 

statistically evaluated. Common practices include cross-validation to validate the 

generalization of a classifier’s result, T-test to check if two sets of result data are 

statistically significant, as well as other tests. 

2.3.4.1. Cross-Validation 

Cross-validation [51] in machine learning is a validation technique to assess the 

classifiers’ performances. It evaluates how the results of the classifiers will generalized to 
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an independent data set. In other words, it overcomes the problem of overfitting and 

makes the predictions more general. 

In machine learning, 10-fold cross-validation is commonly used. In 10-fold cross-

validation, all training data is divided into 10 equal parts. Each time, 9 parts are used for 

training, with 1 part used for testing. This will repeat for 10 times. The average of the 

performance metrics (accuracy, precision, recall, and F-measure) as discussed in 2.3.3 are 

calculated to determine how good the classifiers are. Error! Reference source not 

found. shows this process. The advantage of cross-validation is that all data in the dataset 

are used for both training and testing, which reduces overfitting.  

Round 1

Round 2

Round 10

total training data

 

Figure 1. A sketch of 10-fold cross-validation. 

Since machine learning is rooted in statistics, machine learning results naturally 

need to be tested statistically for its significance. Because of this, researchers more 

commonly perform 10 times 10-fold cross-validation. The process is similar to the 1 time 

10-fold cross-validation discussed above. However, before each 1 fold cross-validation, 

the data is fully randomized. This is repeated 10 times. This further reduces overfitting. 

With 10-time 10-fold cross-validation, 100 data points for each performance metric are 

generated. With this large number of data, it can be applied on hypothesis tests such as T-

test with data being generally normal. The normality of the performance metrics data in 
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this study will be shown later in section 3.2.2.3. Due to large number of data, only some 

samples will be shown. 

2.3.4.2. Statistic Tests 

In general statistic tests including T-tests [52] have two hypotheses: the null 

hypothesis [53], which assumes that the two data sets are statistically equal; and the 

alternative hypothesis [54], which assumes that the two data sets are statistically different. 

P-value [55] calculated in statistic tests is the probability of finding out if one data set is 

significantly different from the other. A commonly used p-value is 0.05, which indicates 

a 95% confidence level. A confidence interval is an interval estimate combined with a 

probability statement. It is the percentage of all possible samples that can be expected to 

include the true population parameter. When using p-value of 0.05, if the T-test results 

give us a p-value of less than 0.05, it means that the two data sets are significantly 

different, or the alternative hypothesis is true; otherwise, we cannot reject the null 

hypothesis (the two data sets are statistically equal).  

2.3.4.2.1. T-test 

Many statistic tests can be used to evaluate experiment data. However, in this 

study, we used T-test, which is a hypothesis test, on the mean of the data. In our case, the 

data is performance metrics data from the 10-time 10-fold cross validation results and 

other results from a test similar to cross-validation. 

There are two types of T-test, paired T-test and unpaired T-test. Paired T-test is 

generally used for studies where the two pairs of data are generated before and after some 

treatment.  
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Unpaired T-test, also called student’s T-test, is applied to two independent data 

sets. In this test, the two data sets do not have to have the same data size. It assumes that 

the data is from a normal distribution and that the standard deviation is approximately the 

same in the two data sets. It calculated the mean difference and p-value.  

2.3.4.2.2. F-test 

F-test [55] is used to test if two population variances are equal. It does this by 

comparing the ratio of two variances. Variances are a measure of dispersion, or how far 

the data are scattered from the mean. If the variances of two populations are equal, the 

ratio is 1. 

In this study, F-test is used to test if the variations in the performance metrics 

results between two classifications are equal. For example, different techniques were 

used to improve classifiers performance. The baseline technique is to use all words (AW) 

of all the documents for classification. The others are using high information words (HIW) 

and using high information words plus bigram (HWB). Using F-test, we can determine if 

the metrics data from the different techniques have equal variance or not. The purpose of 

this is for T-test. There are two types of T-tests in Microsoft Excel. One is for equal 

variance and the other is for unequal variance. F-test results will determine which T-test 

to use in order to find out the statistical significance of the metrics data between the 

baseline (AW) and HIW/HWB.  
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Chapter 3  

Predicting Configuration Bug Reports and Extracting 

Configuration Options 

This chapter discusses the current research work in detail. It uses a Mozilla 

configuration bug report as an example to promote the importance of this study. It then 

delves into the design and the result analysis of this research. 

3.1 Motivation of the Study 

A configurable system is a software system with a core set of functionality and a 

set of variable features which are defined by a set of configuration options [56]. A 

configuration option can be specified in a configuration file, source code, and/or in a user 

input option. A configuration database (also called a configuration model) consists of all 

the configuration options in an application. Constructing an effective configuration model 

has been well discussed in recent work [56]. In this study, it is assumed that the 

configuration model is known. Changes to the value of a configuration option may 

change the program’s behavior in some way. If such changes cause the system to behave 

incorrectly, a configuration bug occurs. Firefox, a popular web browser and also a highly 

configurable system, is used to motivate the approach in this study. 

In Firefox, when the configuration option O1 = Browser.urlbar.filter.javascript is 

set to false, it allows “javascript:” URLs to appear in the autocomplete dropdown of the 

location bar. This can cause potential security threats. Figure 2 shows a bug report 

associated with the configuration option O1. This bug involves 22 comments and took 21 
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months to fix. In fact, at the end of the 21 months, a single change to the value of this 

configuration option fixed the problem. 

 

 

Figure 2. A configuration bug report. 

Suppose that an inexperienced developer is assigned to work on this bug. He or 

she may spend much time figuring out that it is a configuration bug. In such a case, the 

developer has to inspect the source code and try various inputs and configurations to 

hopefully reproduce, locate, and fix the bug. Even if an experienced developer is assigned 

to work on this bug and notices that it is related to configurations based on the system’s 

specific behavior (e.g., mouse scrolling events), she may not be able to quickly determine 

the real configuration option from the configuration database (i.e., O1) as there are 

approximately 1650 possible configuration options in the configuration model of Firefox. 

Therefore, to ease the process of configuration, debugging, and diagnosis, we need new 

techniques that can identify a configuration bug report and link the bug to specific 

configuration options. 
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In this study, it has been observed that natural language descriptions of a bug 

report provide information to indicate whether a bug is related to configuration options. 

In the running example, the word “bookmarklets” is likely to be an indicator of a 

configuration problem. The word “javascript” ties to the name of a configuration option 

O1 obtained from the configuration model. Based on these observations, it was 

determined that natural language processing (NLP) techniques can be used to process text 

reports and convert them into individual words to be used as features in machine learning. 

Developers can use the trained machine learning classifiers to label a bug report as either 

a configuration bug report or a non-configuration bug report. Also, with the help of NLP 

and information retrieval (IR), the classifier returns a list of ranked configuration options 

extracted from the configuration bug reports to the developers. In the above example, O1 

is ranked at the top of the list. 

3.2. Experiment Design and Setup 

This section discusses the design and the setup of the empirical study. In the 

design, a top level diagram and two detailed diagrams are presented. The top level design 

describes the two main functional blocks of this study, i.e., the classification of the bug 

reports and the identification of the configuration options. The two detailed diagrams 

show how each of the functionalities are carried out. 

In the setup, the data sources of the bug reports are discussed and the 

methods/tools used in the analyses of the classification results are presented.  
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3.2.1. Experiment Design 

The design for this study includes two main steps, as shown in Figure 3. The first 

step is called classification, and it takes bug reports with known labels (configuration vs. 

non-configuration) as input, trains classifiers on these bug reports, then uses these 

classifiers to predict the un-labeled bug reports, i.e., identify them as either configuration 

or non-configuration bug reports. The second step is called Configuration Identification: 

it accepts the labeled configuration bug reports, uses NLP procedures to find the 

similarities between the bug reports and the configuration names, and outputs the 

associated configuration names ordered from more likely to less likely. 

classifiers

Classification

bug reports
w/o labels

bug reports
w/ labels

NLP 
processing

config.
database

Config. Identification

similarity

comparison

associated
configs

train
predict

config. bug reportsnon-config.
bug reports

 

Figure 3. The Process flow of bug reports classification and configuration 

identification. 

Figure 4 is a more detailed sketch of the classification step (step 1). A webpage 

that has bug report information also contains extraneous information that needs to be 

excluded. Thus, this step starts with extracting useful information from a webpage given 
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bug reports URLs. A python package called Beautiful Soup is used to accomplish this. A 

text file is thus created that contains only the relevant information from the webpage. 

Generally, only the title and the comment text from the webpage are included.  

Bug reports URLs

Extraction of reports 
texts

Word tokenization

Stopwords removal

Lemmatization

Further feature 
reduction

Highly informative 
words extraction

Bigram inclusion

Training of 
classifiers

Prediction of unlabeled 
bug reports

features of 
unlabeled bug 

reports

features of 
unlabeled bug 

reports

config. bug 
reports

non-config. 
bug reports  

Figure 4. Bug reports classification process. 

Features are then extracted from the cleaned bug reports (now the plain text files). 

The features in this study are words for machine learning. Feature extraction 

encompasses the next six small steps in Figure 4. These are NLP procedures, and 

Python's NLTK package is used to simplify the tasks. The bug report texts are first 

broken down into words. Then, stopwords are removed. It is found that just using the 
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default stopwords corpus in NLTK is not enough, so more stopwords are included that 

are specific in the bug reports, such as people's names. This step is followed by 

lemmatization and more feature reduction to further reduce the dimensionality of the 

features. Lemmatization restores a word to its dictionary form. Thus, for example, 

"configurations" will become "configuration." In addition, it is also found that people 

sometimes write "preference" as "pref," and "configuration" as "config." So words such 

as these are converted back to their original forms. Still there can be many words that are 

considered noisy data in machine learning and could not only reduce learning 

performance, but also misguide a classifier. As an example, Tables 1 and 2 in section 

3.3.1 compare the classification results using all words as features and using only 

selected words as features. The result is much better in the case of the selected words 

(high information words and/or bigrams).   

Thus, to improve the performance of the classifiers, a few more steps can be 

included, i.e., information gain using chi-sq and bigram. The fundamentals of chi-sq and 

bigram have been discussed in Chapter 2. In NLTK package, there are two modules 

called metrics and collocations. The metrics module has the BigramAssocMeasures 

class which contains an implementation of chi-sq. The collocations module has the 

BigramCollocationFinder class that can be used to find n-gram (n is a number, e.g. n=1 

means unigram, n=2 means bigram). These classes are used to identify the highly 

informative words and commonly occurring bigrams. The selected features (words and 

bigrams) are arranged in the form of a dictionary with the words/bigrams as the key and 

the assigned values as the values of the keys. The format used is {word: True}, where 

word is the word selected, and the value is "True." As long as a word/bigram is selected 
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as a feature, "True" is assigned as the value for it to indicate that the word/feature appears 

in that report. Using any other values for the same key will be considered another feature, 

which is not correct. For example, {preference: True} and {preference: 1} are considered 

two features, even though the word feature is the same, namely "preference." Although 

only 100 high informative words are retained as features, the results can sometimes be 

much better than indiscriminately including all words. For this study, in order to evaluate 

the effectiveness of including only high information words and bigrams, three groups of 

word features are extracted for each bug report database, i.e., all words (AW), high 

information words (HIW), and high information words plus bigrams (HWB). AW is the 

control study, and the other two are compared to AW.  

Text in bug reports can vary quite a lot, meaning that one bug report may contain 

words which are quite different from those in another report. Thus, the extracted features 

in one report may be quite different from the other reports.  This creates a problem for 

some machine learning tools, e.g. Weka classifiers. In Weka, an ARFF file is provided as 

input to a classifier for learning, and the features (words in this study) in the ARFF file 

are fixed, although they can take on different but allowed values. Classifiers in NLTK are 

tailored to this special characteristic of text mining (varying words in different bug 

reports). Thus, using the above procedures to extract features does not work in Weka. 

Because of this, feature extraction for Weka classifiers is done inside Weka GUI. 

Although the steps are not exactly the same as Figure 4, the procedures are essentially the 

same. 

In Weka, the first step is to convert the text files that are created in step 2 

(extraction of reports texts) of Figure 4 into ARFF files. This is performed using the 4th 
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sub-application in Weka GUI, i.e., Simple CLI. The command used in CLI is: 

java.weka.core.converters.TextDirectoryLoader. This is a fast operation and it creates 

the ARFF file for all the documents in a specified directory in less than a minute. In order 

to generate the correct ARFF file, inside the directory there should be two sub directories 

with the names config and nonconfig. config subdirectory contains all the known 

configuration bug reports, while the nonconfig subdirectory contains all the known non-

configuration bug reports. The subdirectory names are important since they are the clue 

for Weka to assign as values to the class. In this case, the class can take the value of 

either config or nonconfig. For example, for all the Mozilla bug reports converted from 

URL links into 300 text files, the 150 configuration related text files are stored in the 

config directory, and the 150 non-configuration related are stored in the nonconfig 

directory. These two directories are subdirectories of “Mozilla” with prepending path. 

The ARFF files created contains only two features, one is the whole text, and the 

other one is the class (config vs nonconfig). To convert the text into words, the 

StringToWordVector filter is used in the Weka Explorer sub-application to further divide 

the text feature into word features. There are a number of options to select to get high 

information words and high information words plus bigrams. The steps are similar to 

steps 2-8 in Figure 4 with some differences. For example, Weka does not contain 

lemmatization, but stemmer. And thus, in HIW and HWB the LovinsStemmer is used. 

LovinsStemmer is the oldest in use and is also the fastest [57]. For AW, no stemming is 

used except that the extracted features are all words; numbers and other symbols are 

discarded. High information words are extracted using Tfidf. 
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With the feature sets prepared, they are then passed to the classifiers for training. 

The classifiers included in this study are those discussed in Chapter 2. NLTK classifiers 

used are Naïve Bayes, Decision Tree, and MaxEnt; Sklearn classifiers are Naïve Bayes, 

Decision Tree, Logistic Regression and SVC (Support Vector Machine for Classification); 

Weka classifiers are ZeroR, NaiveBayes, Decision Tree (J48), Logistic Regression and 

SVM. 

In Weka as in NLTK and Sklearn, classification is performed programmatically 

rather than using Weka’s Explorer or Experimenter. In Explorer, only one round of 10-

fold cross validation can be performed, which generates too little data for statistical 

significance analysis. Experimenter can run 10 times 10-fold cross validation; however, it 

contains too much irrelevant information and can be hard to locate the performance 

metrics data in the exported csv files. Since Weka is written in Java, in this study Java 

programs are written to run Weka classifiers.  

Figure 5 shows the flow of the second step in Figure 3. There are a configuration 

database and the configuration bug reports. The configuration database is a list of 

configuration names and, depending on the software, the configuration names can use 

camel case or have dots or underlines separating the words. So NLP processing of the 

configurations is different from that shown in Figure 3. In processing configurations, the 

words are split by the camel case, the underlines, and the dots. Sometimes when two 

words are combined without any of the above, regular expressions are used to split them. 

The words are restored to their root forms with lemmatization. Then the words are 

combined by spaces to become a string of words. The end result of this is one document 

is one string of words. For example, the Mozilla configuration 
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Browser.urlbar.filter.javascript discussed in section 3.1 is split into the words: browser, 

url, bar, filter, javascript. These words are combined to become browser url bar filter 

javascript. This is one document in the configuration database. After all the 

configurations are converted, the configuration corpus is built up and ready for the next 

step, i.e., Tfidf fitting and transformation.  

Config. bug reports

NLP processing into 
pure word text

Tfidf transformation

Identification of 
similarities

Output the first 10 
most relevant config.

Config. Database

NLP processing into 
corpus of words

Tfidf fitting and 
transformation

 

Figure 5. Configuration identification of a configuration bug report. 

For configuration bug reports, in addition to similar processing described above 

for the configuration database, they are first processed as in Figure 6 (steps 2-8). The 

configuration corpus is then processed with TfidfVectorizer in Sklearn to convert the 

collection of documents (each document is one configuration transformed into a string of 

words) to a matrix of TF-IDF features. Figure 6 lists part of the configurations in the 

three open source projects. Before discussing the procedures, it is necessary to provide 

definitions of the terms to be used. 

In this step, the TfidfVectorizer learns the vocabulary from the configuration 

corpus, counts the frequency of the words and finds the inverse term frequency of the 



www.manaraa.com

 

34 
 

words in each document of the corpus. In TfIdfVectorizer, both unigrams and bigrams 

for the ngram_range parameter are included to help increase the chance of finding the 

right similarities between bug reports and configurations. Including bigrams will 

significantly increase the size of the matrix; however, since a configuration's size is very 

small (only a few words) compared to a bug report's size, this is not much of a penalty. 

The trained TfidfVectorizer is then used to transform (construct matrix form) the bug 

reports. Each bug report is processed one at a time in the whole flow. After the bug report 

transformation, TfidfVectorizer presents the Tfidf score of each word that occurs in both 

a configuration and a bug report. A naive approach is adopted to calculate the similarity 

score. This is done by adding the scores of all words that occur in each configuration and 

the bug report and output the configurations with the first 10 highest scores.  

 

Figure 6. Some configurations in the three open source projects. 
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3.2.2. Experiment Setup 

3.2.2.1 Data for Classification 

The efficacy of classification and configuration identification of bug reports in this design 

is evaluated on bug reports from three open source software projects, i.e., Mozilla, MySQL, and 

Apache. For diversity of data, we are not restricted to a few specific components of the software. 

The reason to choose bug reports from these open source projects is that they are popular 

software, have bug reports generally available, and some Mozilla bug reports are already labeled 

as associated with some configurations in Mozilla’s website. The last characteristic is especially 

helpful since it can be used as the ground truth to evaluate our design. For those configuration 

bug reports collected that are not identified as associated with configurations, they are identified 

manually. In addition, labeling a bug report as configuration or non-configuration is also done 

manually. This involves both using key word search in bug report database and reading through 

the reports.  

For each software project, 300 bug reports are collected, with equal number of 

configuration and non-configuration bug reports. Thus, the total number of bug reports collected 

for all three software projects is 900. Collecting an equal number of configuration and non-

configuration bug reports is to ensure that the classifiers that are trained on these bug reports are 

not biased. For machine learning, it is always desirable to have more bug reports for training 

However, collecting bug reports and correctly labeling them is very time consuming; besides, this 

number has been shown to be enough for machine learning [58].  

3.2.2.2 Cross Validation 

As discussed in Chapter 2, cross validation reduces overfitting and makes the results of 

trained classifiers generalized to independent bug report prediction. Thus, in the first part of the 

study, 10-fold cross validation is performed for all the classifiers on all the data sets. In addition, 
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in order to get enough data to analyze the statistical significance of the results, the 10-fold cross 

validation is run 10 times in each case to get 100 data points for each performance metric 

(accuracy, precision, recall and F-measure). Before each run, the bug reports, or the word features 

of them, are completely randomized so that the result is not a duplicate of the previous run. 

Although cross-validation is generally considered a good measure of a classifier’s 

performance, the features are also known for both training data and testing data. In classifying 

bug reports, if a classifier is used to predict a truly unknown bug report, it would not be possible 

for the classifier to know the features of the unknown bug report. This is because one bug report 

can use quite different words than another, and words are the features for classifiers to train. It is 

therefore predicted that 10 times 10-fold cross validation results will be better than if a classifier 

is trained only on the features of the trained reports but used to test unknown bug reports. Due to 

this concern, another type of validation is performed that is similar to the 10 times 10-fold cross 

validation but takes this into consideration. In addition, in order to get more bug reports for 

testing, unlike 10-fold cross validation, 5-fold is used. Thus, of each bug report type 

(configuration or non-configuration), 30 bug reports are used for testing, while 120 are used for 

training. To get 100 data points for each performance metric, the 5-fold validation has to run 20 

times.  

Here is how the training and testing process is conducted: In this validation, the bug 

reports will be shuffled 20 times. After each shuffle, the bug reports are divided into five parts for 

both configuration and non-configuration. Four parts are copied into a directory that is used for 

training, and one part is copied into another directory that is used for testing. This is rotated five 

times similar to Figure 1. Feature extraction for training is done only on the reports in the training 

directory, while features for testing are extracted from reports in the testing directory. This makes 

sure that the classifiers do not know the testing bug reports, which is more representative of 

reality. After one training and testing, one data point is obtained for all the metrics. Then the 
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training and testing directory’s contents are cleared and filled with the next rotated data. After the 

five rotations are done, it is similar to the completion of one 10-fold cross validation. Then the 

bug reports are shuffled, and this process repeats for 20 times. To differentiate this from the 10 

times 10-fold cross validation, it will be called 20x5 training and testing. 

The 20x5 training and testing runs much slower than 10 times 10-fold CV. The main step 

that makes it slow is in feature extraction. In 10 times10-fold CV, feature extraction is performed 

only one time, while in the 20x5 training and testing, feature extraction is performed 100 times.  

3.2.2.3. Statistical Significance Test 

As discussed before, unpaired T-test is performed to evaluate the statistical significance 

of the performance metrics. In this study, the AW method is considered the baseline or control 

group, while HIW and HWB are the treatment groups. This is because one of the objectives of 

this study is to evaluate the effectiveness of using high information words and bigrams as features 

in classifying bug reports compared to using all words as features.  

Microsoft Excel Data Analysis package contains a lot of statistical analysis tools, and it 

includes both T-test and F-test. F-test is used to compare the variance of the control data vs. the 

treatment data. When the control and the treatment data have unequal variances, T-test with 

unequal variance in Excel is used to test for significance; otherwise, T-test with equal variance is 

used.  

F-test assumes that the data is normally distributed and the data points are independent of 

each other. The second assumption is automatically satisfied since each classification run is 

independent of others. Thus, in order to use F-test, data normality has to be verified. In this study, 

Q-Q plot [59] is used to examine data normality. This is done in Excel as well. The raw 

performance metrics data to be plotted is sorted first. Then Cumulative Distribution Function 

(CDF) is calculated which is used for calculating expected value and Z-value. Expected value is 
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calculated using the NORM.INV function in Excel with parameters of CDF and the mean and 

standard deviation of the raw data. Z-value is calculated using the function NORM.S.INV with 

parameter CDF. Finally, the data is plotted with Z-value on the x-axis, while the raw data and the 

expected values on the y-axis. The plot for the configuration F-measure data for Mozilla 

classified by NLTK Naïve Bayes using HIW is shown in Figure 7 as an example. Expected 

values in the plot represent data in normal distribution. Raw data and the expected values do not 

generally deviate much, which is an indication that the data is normally distributed. Thus, using 

F-test for variance test is valid. 

 

  

         (a)                        (b)  

Figure 7. Q-Q plots of the Mozilla configuration F-measure classified using NLTK 

Naïve Bayes using HIW.  

Figure 8 shows the statistical significance test on configuration F-measure of Apache 

result. The top table shows the F-test result on the variance of configuration F-measure. Since p-

value is great than 0.05, the null hypothesis is assumed true, which means that there is no 

statistical significance between the two variances. Thus, T-test can be performed, which is shown 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-4 -2 0 2 4
Z-value 

config F
(AW)
Expected

0.6

0.7

0.8

0.9

1

1.1

-4 -2 0 2 4Z-value 

config F
(HIW)

Expected



www.manaraa.com

 

39 
 

as the second table in Figure 8. In this result, p-value is significantly smaller than 0.05. Thus, the 

null hypothesis is rejected, which means the two means are significant different.  

 

Figure 8. F-test on the variance and T-test on the mean of configuration F-measure 

of Apache 10 times 10-fold CV using NLTK Naïve Bayes. 

3.3. Results and Analyses 

This section presents results and analyses of classification and configuration 

identification. Through the results and analyses we can see that using the approaches in 
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the study to classify configuration bug reports and to identify configuration options is 

effective. 

3.3.1 Classification of Bug Reports into Configuration and Non-configuration 

Related 

The mean values of the performance metrics are shown in Tables 1 to 15. One 

table contains the results for one open source project (Apache, Mozilla, or MySQL) using 

one classification software (NLTK, Sklearn, or Weka) with either 10 times 10-fold CV or 

50x2 training and testing. HIW and HWB data are compared with AW to see if using 

high information words and bigrams can improve classifiers’ performance. Adopting the 

format in Weka Experimenter, the HIW and HWB data in the tables are postfixed with 

either “*” or “v”. The symbol “*” indicates that the HIW/HWB data are statistically 

worse than the AW data, while the symbol “v” indicates that they are statistically better 

than the AW data. If there is no statistical difference between HIW/HWB and AW, then 

there is no symbol appended to the data. 

Tables 1-5 show the Apache results. Tables 1 and 2 are both from NLTK 

classifications. In both cases, we can see that using HIW or HWB improves the 

prediction performance. Since F-measure is the more comprehensive representation of 

the overall performance of a classifier, F-measure results are used in analysis from now 

on. The greatest increase in performance is Maxent with 20x5 training and testing. From 

AW to HIW, the non-configuration F-measure increases by 50%. It is also noted that by 

not including testing data in feature selection as done in 50x2 training and testing, all 

three classification schemes (AW, HIW and HWB) show some decrease in the results, as 

can be seen by comparing Table 1 to Table 2, and Table 3 to Table 4. Although 10 times 



www.manaraa.com

 

41 
 

10-fold CV (10x10) and 50x2 training and testing use different documents for training 

and testing, the more number of testing bug reports used in 50x2 should stabilize any 

variation in results due to too few testing bug reports, and the 120 bug reports of each 

type in 50x2 should be sufficient for training. Thus, it is believed that the different 

number of training and testing bug reports in 50x2 as compared to the 10x10 is not the 

factor contributing to the decrease in performance; it is the fact that not using testing bug 

reports’ features for training that leads to the decrease. This is understandable, since if a 

classifier uses all features to make a decision, it is like it has seen the bug reports that are 

used for testing. The result certainly should be better. However, the decrease is minor, 

which makes 10x10 still a good validation metric. Besides, by using the two different 

approaches to evaluate the classifiers’ performances, it also proves the validity of either 

one, since the results show very little difference. 

Table 1. Apache 10 times 10-fold CV using NLTK classifiers 

Eval. Metrics Maxent NaiveBayes Decision Tree 
AW HIW HWB AW HIW HWB AW HIW HWB 

Accuracy 0.725 0.872v 0.88v 0.726 0.87v 0.88v 0.812 0.845v 0.834 
Precision Conf. 0.7 0.858v 0.867v 0.661 0.84v 0.854v 0.856 0.87 0.853 

Non. 0.806 0.897v 0.906v 0.932 0.921 0.919 0.787 0.833v 0.83v 
Recall Conf. 0.862 0.9v 0.906v 0.959 0.925* 0.921* 0.755 0.818v 0.815v 

Non. 0.588 0.845v 0.854v 0.493 0.815v 0.838v 0.868 0.872 0.853 
F-meas. Conf. 0.755 0.875v 0.883v 0.78 0.878v 0.884v 0.798 0.839v 0.829v 

Non. 0.643 0.867v 0.876v 0.63 0.86v 0.874v 0.822 0.849v 0.837v 

 
 

Table 2. Apache 20 times 5-fold training and testing using NLTK classifiers 

Eval. Metrics Maxent NaiveBayes Decision Tree 
AW HIW HWB AW HIW HWB AW HIW HWB 

Accuracy 0.679 0.857v 0.845v 0.725 0.837v 0.833v 0.808 0.848v 0.838v 
Precision Conf. 0.701 0.838v 0.806v 0.657 0.799v 0.783v 0.847 0.861v 0.848 

Non. 0.749 0.885v 0.902v 0.93 0.898* 0.916 0.783 0.842v 0.845v 
Recall Conf. 0.81 0.889v 0.912v 0.963 0.91* 0.93* 0.757 0.835v 0.828v 

Non. 0.548 0.825v 0.778v 0.488 0.763v 0.736v 0.859 0.861 0.848 
F-meas. Conf. 0.701 0.861v 0.854v 0.779 0.849v 0.849v 0.797 0.846v 0.835v 

Non. 0.567 0.852v 0.833v 0.632 0.821v 0.813v 0.817 0.85v 0.839v 
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In Tables 3 and 4, we can see that except for Naïve Bayes and Logistic 

Regression, using either HIW or HWB, the classifiers perform better than using AW. 

However, compared to NLTK, Sklearn classifiers generally perform better. Even when 

using AW, the F-measure is still mostly greater than 0.8. The largest increase in 

performance is SVM from using AW to HIW, which is 22.4%. 

Table 3. Apache 10 times 10-fold CV using Sklearn classifiers 

Eval. Metrics Logistic NaiveBayes 
AW HIW HWB AW HIB HWB 

Accuracy 0.869 0.836* 0.913v 0.892 0.877* 0.896 
Precision Conf. 0.899 0.845* 0.946v 0.872 0.869 0.88 

Non. 0.856 0.84* 0.892v 0.925 0.895* 0.924 
Recall Conf. 0.838 0.834 0.88v 0.925 0.894* 0.923 

Non. 0.9 0.839* 0.947v 0.858 0.859 0.868 
F-meas. Conf. 0.862 0.835* 0.909v 0.895 0.879* 0.898 

Non. 0.873 0.836* 0.917v 0.887 0.874 0.892 
Eval. Metrics Decision Tree SVM 

AW HIW HWB AW HIW HWB 
Accuracy 0.801 0.853v 0.848v 0.621 0.871v 0.812v 

Precision Conf. 0.814 0.87v 0.867v 0.895 0.96v 0.974v 
Non. 0.804 0.833v 0.842v 0.575 0.817v 0.739v 

Recall Conf. 0.791 0.818v 0.831v 0.268 0.776v 0.642v 
Non. 0.811 0.872v 0.865v 0.974 0.967 0.981 

F-meas. Conf. 0.796 0.839v 0.844v 0.396 0.855v 0.766v 
Non. 0.803 0.849v 0.85v 0.722 0.884v 0.841v 

 

Table 4. Apache 20 times 5-fold training and testing using Sklearn classifiers 

Eval. Metrics Logistic NaiveBayes 
AW HIW HWB AW HIB HWB 

Accuracy 0.871 0.835* 0.9v 0.882 0.867* 0.84* 
Precision Conf. 0.902 0.836* 0.94v 0.853 0.863 0.798* 

Non. 0.85 0.841 0.871v 0.922 0.879* 0.905* 
Recall Conf. 0.835 0.837 0.857v 0.927 0.877* 0.917 

Non. 0.907 0.833* 0.943v 0.836 0.857v 0.763* 
F-meas. Conf. 0.865 0.834* 0.895v 0.887 0.868* 0.852* 

Non. 0.875 0.834* 0.905v 0.875 0.866 0.826* 
Eval. Metrics Decision Tree SVM 

AW HIW HWB AW HIW HWB 
Accuracy 0.801 0.836v 0.844v 0.615 0.854v 0.791v 

Precision Conf. 0.827 0.861v 0.866v 0.918 0.956v 0.972v 
Non. 0.786 0.82v 0.833v 0.569 0.792v 0.714v 

Recall Conf. 0.768 0.807v 0.821v 0.254 0.742v 0.601v 
Non. 0.833 0.865v 0.868v 0.977 0.965* 0.981 

F-meas. Conf. 0.793 0.83v 0.84v 0.387 0.833v 0.737v 
Non. 0.806 0.84v 0.848v 0.718 0.869v 0.826v 
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Table 5 is the Weka classification results. When using Weka, feature extraction is 

done in Weka Explorer. Thus, it is not possible to perform 50x2 training and testing 

programmatically where the feature selections are carried out 100 times. Because of this, 

only 10 times 10-fold CV is done using Weka.  

In general, Weka ZeroR classifier has the worst performance of all classifiers 

(Weka, NLTK and Sklearn). It does not do any real prediction, but simply labels all bug 

reports as configuration bug reports, as shown in the 1.0 configuration recall and 0.0 non-

configuration recall. It does so regardless of using AW, HIW or HWB. Using HIW or 

HWB does not provide much performance improvement as in NLTK and Sklearn. We 

can see that two classifiers (Decision Tree and Logistic Regression) perform better 

without using high information words and bigram. Weka classifiers may be optimized to 

work with all words. However, even though Weka’s Logistic Regression has much better 

performance using AW than the HIW and HWB, it sacrifices time for the number.  In 

general, Logistic Regression takes hours (three or more hours) to complete using AW, 

while it takes only about 10 minutes using HIW or HWB. When time is of a concern, 

sacrificing a little performance degradation for timely results is a great trade-off. In the 

worst case, the decrease in performance from using AW to HWB is 15.8% in non-

configuration F-measure with Logistic Regression.  
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Table 5. Apache 10 times 10-fold CV using Weka classifiers 

Eval. Metrics ZeroR NaiveBayes Decision Tree 
AW HIW HWB AW HIB HWB AW HIW HWB 

Accuracy 0.5 0.5 0.5 0.814 0.854v 0.863v 0.844 0.82* 0.822* 
Precision Conf. 0.5 0.5 0.5 0.844 0.896v 0.865v 0.856 0.855 0.849 

Non. 0.0 0.0 0.0 0.801 0.832v 0.873v 0.846 0.801* 0.811* 
Recall Conf. 1.0 1.0 1.0 0.783 0.809v 0.869v 0.838 0.779* 0.795* 

Non. 0.0 0.0 0.0 0.845 0.899v 0.857v 0.851 0.861 0.849 
F-meas. Conf. 0.667 0.667 0.667 0.807 0.845v 0.863v 0.843 0.811* 0.816* 

Non. 0.0 0.0 0.0 0.818 0.86v 0.861v 0.844 0.827* 0.826* 
      

Eval. Metrics Logistic Regression Support Vector Machine  
AW HIW HWB AW HIW HWB    

Accuracy 0.887 0.755* 0.756* 0.886 0.898 0.891    
Precision Conf. 0.927 0.765* 0.756* 0.908 0.945* 0.933*    

Non. 0.863 0.759* 0.771* 0.877 0.868 0.865    
Recall Conf. 0.845 0.749* 0.77* 0.865 0.849* 0.847*    

Non. 0.929 0.762* 0.743* 0.908 0.947v 0.935v    
F-meas. Conf. 0.88 0.752* 0.758* 0.882 0.891 0.885    

Non. 0.892 0.755* 0.751* 0.889 0.903 0.896    

 

Tables 6-10 show the Mozilla classification results. The benefit of using high 

information words and bigram is not as significant as in Apache. In some cases, there is 

somewhat of a decrease in performance. However, as in Logistic Regression in Weka, 

using all words as features increases the classification time. This is especially so when 

the number of bug reports to predict is increasing. 

Tables 6-7 are the NLTK classifiers results. As in Apache, Maxent has the worst 

performance when all words are used as features. Not only does it predict very poorly, 

but it also takes a very long time to complete (sometimes a few days). In the worst case, it 

has zero non-configuration F-measure. But when using HIW, F-measure increases 

significantly to 0.875. 

Table 6. Mozilla 10 times 10-fold CV using NLTK classifiers 

Eval. Metrics Maxent NaiveBayes Decision Tree 
AW HIW HWB AW HIW HWB AW HIW HWB 

Accuracy 0.5 0.888v 0.878v 0.5 0.862v 0.862v 0.877 0.891v 0.88 
Precision Conf. 0.5 0.843v 0.841v 0.5 0.8v 0.82v 0.877 0.91v 0.881 

Non. 0.0 0.96v 0.935v 0.0 0.975v 0.935v 0.889 0.882 0.889 
Recall Conf. 1.0 0.965* 0.94* 1.0 0.98* 0.942* 0.885 0.872* 0.885 

Non. 0.0 0.811v 0.815v 0.0 0.745v 0.782v 0.87 0.909v 0.875 
F-meas. Conf. 0.667 0.898v 0.886v 0.667 0.879v 0.874v 0.878 0.887 0.88 

Non. 0.0 0.875v 0.868v 0.0 0.839v 0.847v 0.876 0.893v 0.879 
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Table 7. Mozilla 20 times 5-fold training and testing using NLTK classifiers 

Eval. Metrics Maxent NaiveBayes Decision Tree 
AW HIW HWB AW HIW HWB AW HIW HWB 

Accuracy 0.5 0.875v 0.895v 0.5 0.832v 0.873v 0.879 0.894v 0.881 
Precision Conf. 0.5 0.822v 0.852v 0.5 0.768v 0.835v 0.889 0.904v 0.884 

Non. 0.0 0.957v 0.955v 0.0 0.959v 0.929v 0.876 0.889v 0.881 
Recall Conf. 1.0 0.962* 0.96* 1.0 0.966* 0.935* 0.871 0.884v 0.878 

Non. 0.0 0.788v 0.829v 0.0 0.698v 0.811v 0.888 0.903v 0.883 
F-meas. Conf. 0.667 0.886v 0.902v 0.667 0.853v 0.881v 0.878 0.892v 0.88 

Non. 0.0 0.862v 0.886v 0.0 0.802v 0.863v 0.881 0.895v 0.881 

 

When using Sklearn classifiers, as shown in Tables 8 and 9, using high 

information words and bigrams does not provide much of a benefit. Except for SVM, 

Logistic Regression classifier actually performs better with all words as features; Naïve 

Bayes and Decision Tree do not show any difference using AW and HIW/HWB. Using 

HIW or HWB, we generally see a time saving benefit, especially when the number of bug 

reports to be classified is large.  

Table 8. Mozilla 10 times 10-fold CV using Sklearn classifiers 

Eval. Metrics Logistic NaiveBayes 
AW HIW HWB AW HIB HWB 

Accuracy 0.94 0.822* 0.926* 0.887 0.887 0.87 
Precision Conf. 0.96 0.816* 0.927* 0.85 0.86 0.824* 

Non. 0.928 0.84* 0.932 0.943 0.93* 0.942 
Recall Conf. 0.921 0.843* 0.928 0.948 0.933* 0.95 

Non. 0.959 0.802* 0.924* 0.826 0.841v 0.791* 
F-meas. Conf. 0.938 0.826* 0.926* 0.894 0.893 0.881 

Non. 0.942 0.817* 0.926* 0.877 0.88 0.857* 
  Decision Tree SVM 
Accuracy 0.872 0.875 0.877 0.732 0.926v 0.869v 

Precision Conf. 0.886 0.869* 0.876* 0.931 0.925 0.861* 
Non. 0.866 0.892v 0.889v 0.666 0.937v 0.89v 

Recall Conf. 0.859 0.887v 0.885v 0.505 0.934v 0.888v 
Non. 0.884 0.862* 0.868* 0.96 0.918* 0.85* 

F-meas. Conf. 0.87 0.875 0.877 0.644 0.927v 0.871v 
Non. 0.872 0.83* 0.875 0.784 0.924v 0.865v 
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Table 9. Mozilla 20 times 5-fold training and testing using Sklearn classifiers 

Eval. Metrics Logistic NaiveBayes 
AW HIW HWB AW HIB HWB 

Accuracy 0.941 0.838* 0.926* 0.885 0.887 0.88 
Precision Conf. 0.959 0.834* 0.927* 0.843 0.85 0.84 

Non. 0.927 0.851* 0.932 0.944 0.94 0.936 
Recall Conf. 0.922 0.852* 0.928 0.95 0.945 0.943 

Non. 0.959 0.827* 0.924* 0.819 0.828 0.815 
F-meas. Conf. 0.939 0.841* 0.926* 0.892 0.894 0.887 

Non. 0.942 0.837* 0.926* 0.875 0.878 0.87 
  Decision Tree SVM 
Accuracy 0.874 0.864 0.877 0.728 0.927v 0.869v 

Precision Conf. 0.883 0.855* 0.872 0.927 0.924 0.861* 
Non. 0.871 0.879 0.889v 0.658 0.933v 0.89v 

Recall Conf. 0.865 0.879v 0.885v 0.496 0.932v 0.888v 
Non. 0.883 0.848* 0.868* 0.96 0.921* 0.85* 

F-meas. Conf. 0.872 0.865 0.877 0.642 0.927v 0.871v 
Non. 0.875 0.861* 0.875 0.78 0.926v 0.865v 

 

Using Weka classifiers, there is generally not much difference in performance 

when using AW compared with HIW/HWB, except for Logistic Regression which 

always performs better but at the cost of taking a much longer time. Classification results 

of Mozilla bug reports using Weka classifiers are shown in Table 10. 

Table 10. Mozilla 10 times 10-fold CV using Weka classifiers 

Eval. Metrics ZeroR NaiveBayes Decision Tree 
AW HIW HWB AW HIB HWB AW HIW HWB 

Accuracy 0.5 0.5 0.5 0.809 0.832v 0.836v 0.89 0.873* 0.882 
Precision Conf. 0.5 0.5 0.5 0.876 0.89 0.885 0.906 0.874* 0.878* 

Non. 0.0 0.0 0.0 0.772 0.799v 0.807v 0.886 0.886 0.898v 
Recall Conf. 1.0 1.0 1.0 0.727 0.764v 0.778v 0.875 0.883 0.893v 

Non. 0.0 0.0 0.0 0.891 0.899 0.894 0.905 0.863* 0.87* 
F-meas. Conf. 0.667 0.667 0.667 0.789 0.817v 0.824v 0.887 0.875 0.882 

Non. 0.0 0.0 0.0 0.824 0.843v 0.845v 0.892 0.87* 0.88 
    

Eval. Metrics Logistic Regression Support Vector Machine  
AW HIW HWB AW HIW HWB    

Accuracy 0.86 0.791* 0.822* 0.94 0.931 0.933    
Precision Conf. 0.866 0.803* 0.842* 0.951 0.96 0.96    

Non. 0.869 0.795* 0.817* 0.935 0.912* 0.915*    
Recall Conf. 0.864 0.787* 0.803* 0.93 0.903* 0.907*    

Non. 0.855 0.796* 0.841* 0.949 0.959 0.959    
F-meas. Conf. 0.861 0.789* 0.818* 0.939 0.928 0.931    

Non. 0.857 0.79* 0.825* 0.94 0.933 0.935    

 

Tables 11 and 12 show the classification results of MySQL bug reports using 

NLTK classifiers. As in the classification of Apache and MySQL bug reports, Maxent is 

sensitive to using AW or HIW/HWB as features. It always performs much worse when 
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using AW. Decision Tree performs better using HIW/HWB in the 20x5 training and 

testing but not statistically different in the case of 10x10 CV. 

Table 11. MySQL10 times 10-fold CV using NLTK classifiers 

Eval. Metrics Maxent NaiveBayes Decision Tree 
AW HIW HWB AW HIW HWB AW HIW HWB 

Accuracy 0.5 0.838v 0.811v 0.867 0.818* 0.799* 0.764 0.773 0.752 
Precision Conf. 0.02 0.795v 0.771v 0.873 0.762* 0.756* 0.782 0.786 0.773 

Non. 0.5 0.917v 0.88v 0.877 0.926v 0.878 0.763 0.774 0.748* 
Recall Conf. 0.001 0.926v 0.895v 0.87 0.941v 0.9 0.743 0.759v 0.728* 

Non. 1.0 0.751v 0.727v 0.865 0.695* 0.702* 0.785 0.787 0.777 
F-meas. Conf. 0.003 0.852v 0.826v 0.867 0.84* 0.818* 0.756 0.767 0.744 

Non. 0.667 0.819v 0.791v 0.866 0.788* 0.774* 0.769 0.776 0.757 

Table 12. MySQL 20 times 5-fold training and testing using NLTK classifiers 

Eval. Metrics Maxent NaiveBayes Decision Tree 
AW HIW HWB AW HIW HWB AW HIW HWB 

Accuracy 0.504 0.817v 0.804v 0.855 0.799* 0.798* 0.735 0.766v 0.757v 
Precision Conf. 0.068 0.771v 0.761v 0.856 0.742* 0.746* 0.753 0.784v 0.776v 

Non. 0.505 0.892v 0.872v 0.867 0.909v 0.889v 0.726 0.758v 0.745v 
Recall Conf. 0.046 0.91v 0.894v 0.863 0.93v 0.915v 0.708 0.745v 0.725v 

Non. 0.962 0.723* 0.715* 0.846 0.668* 0.681* 0.761 0.787v 0.789v 
F-meas. Conf. 0.036 0.833v 0.821v 0.855 0.824* 0.82* 0.726 0.76v 0.747v 

Non. 0.647 0.795v 0.783v 0.852 0.764* 0.768* 0.74 0.769v 0.764v 

 

In the case of Sklearn classifiers, again SVM is more sensitive than the others 

when using AW as compared to using HIW/HWB. It always performs worse with AW. 

Again, Logistic Regression works better with AW at the cost of time. Decision Tree does 

not show much difference using either AW or HIW/HWB, while there is slightly worse 

performance in Naïve Bayes with HIW/HWB.  

Table 13. MySQL 10 times 10-fold CV using Sklearn classifiers 

Eval. Metrics Logistic NaiveBayes 
AW HIW HWB AW HIB HWB 

Accuracy 0.882 0.785* 0.86* 0.864 0.853 0.816* 
Precision Conf. 0.911 0.808* 0.876* 0.827 0.819* 0.778* 

Non. 0.865 0.778* 0.856 0.925 0.908* 0.885* 
Recall Conf. 0.851 0.759* 0.847 0.931 0.915* 0.898* 

Non. 0.913 0.811* 0.873* 0.797 0.791 0.734* 
F-meas. Conf. 0.877 0.777* 0.858* 0.874 0.862 0.83* 

Non. 0.886 0.79* 0.861* 0.852 0.841 0.797* 
Eval. Metrics Decision Tree SVM 

AW HIW HWB AW HIW HWB 
Accuracy 0.736 0.737 0.752 0.819 0.861v 0.823 

Precision Conf. 0.763 0.773 0.771 0.872 0.901v 0.908v 
Non. 0.723 0.721 0.747v 0.808 0.836v 0.778* 

Recall Conf. 0.697 0.683 0.728 0.771 0.817v 0.724* 
Non. 0.774 0.791v 0.776 0.867 0.905v 0.921v 

F-meas. Conf. 0.723 0.719 0.743 0.805 0.854v 0.798 
Non. 0.743 0.75 0.757 0.825 0.867v 0.84v 
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Table 14. MySQL 20 times 5-fold training and testing using Sklearn classifiers 

Eval. Metrics Logistic NaiveBayes 
AW HIW HWB AW HIB HWB 

Accuracy 0.88 0.769* 0.849* 0.864 0.835* 0.814* 
Precision Conf. 0.906 0.783* 0.855* 0.826 0.816 0.768* 

Non. 0.862 0.765* 0.849* 0.919 0.866* 0.892* 
Recall Conf. 0.851 0.753* 0.845 0.928 0.873* 0.909* 

Non. 0.909 0.785* 0.852* 0.799 0.798 0.719* 
F-meas. Conf. 0.876 0.764* 0.848* 0.873 0.841* 0.831* 

Non. 0.883 0.772* 0.849* 0.853 0.828* 0.792* 
Eval. Metrics Decision Tree SVM 

AW HIW HWB AW HIW HWB 
Accuracy 0.735 0.74 0.735 0.811 0.848v 0.792* 

Precision Conf. 0.757 0.77v 0.756 0.864 0.888v 0.897v 
Non. 0.725 0.722 0.723 0.802 0.816 0.739* 

Recall Conf. 0.7 0.691 0.701 0.763 0.798v 0.667* 
Non. 0.77 0.789 0.769 0.859 0.897v 0.918v 

F-meas. Conf. 0.724 0.725 0.725 0.795 0.839v 0.759* 
Non. 0.744 0.752 0.743 0.818 0.855v 0.816 

 

In the case of Weka classifiers, again SVM performs better using HIW/HWB 

while Logistic Regression and Naïve Bayes are better with AW, as shown in Table 15. 

Table 15. MySQL 10 times 10-fold CV using Weka classifiers 

Eval. Metrics ZeroR NaiveBayes Decision Tree 
AW HIW HWB AW HIB HWB AW HIW HWB 

Accuracy 0.5 0.5 0.5 0.876 0.822* 0.721* 0.754 0.752 0.743 
Precision Conf. 0.5 0.5 0.5 0.887 0.806 0.67* 0.755 0.77v 0.771v 

Non. 0.0 0.0 0.0 0.878 0.855v 0.842v 0.768 0.748* 0.734* 
Recall Conf. 1.0 1.0 1.0 0.872 0.859 0.893v 0.767 0.731* 0.704* 

Non. 0.0 0.0 0.0 0.881 0.785* 0.549* 0.741 0.772v 0.782v 
F-meas. Conf. 0.667 0.667 0.667 0.876 0.827* 0.763* 0.756 0.745 0.729* 

Non. 0.0 0.0 0.0 0.876 0.813* 0.656* 0.749 0.755 0.752 
    

Eval. Metrics Logistic Regression Support Vector Machine  
AW HIW HWB AW HIW HWB    

Accuracy 0.89 0.735* 0.73* 0.867 0.851 0.871    
Precision Conf. 0.882 0.74* 0.734* 0.903 0.852* 0.896    

Non. 0.908 0.745* 0.74* 0.844 0.864v 0.86v    
Recall Conf. 0.907 0.742* 0.737* 0.827 0.86v 0.845v    

Non. 0.872 0.728* 0.722* 0.907 0.843* 0.897    
F-meas. Conf. 0.892 0.736* 0.729* 0.861 0.852 0.866    

Non. 0.886 0.73* 0.725* 0.872 0.849* 0.875    

 

Overall, the NLTK classifiers are more sensitive to using AW or HIW/HWB than 

the NLTK and the Weka classifiers. This is especially true with the NLTK classifier 

Maxent. NLTK classifiers perform better when using high information words and 

bigrams.  In addition, bug reports from different projects seem to respond differently to 
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AW or HIW/HWB. Apache bug reports are generally classified better when using 

HIW/HWB rather than using AW for all three classifiers (NLTK, Sklearn and Weka).  In 

Weka classifiers, Logistic Regression generally performs better with AW, while in 

Sklearn SVM performs better with HIW/HWB. Even when a classifier does not perform 

well with HIW/HWB, the performance difference is not large compared to AW. However, 

when a classifier does not perform well with AW, the performance can be very bad, as 

can be seen in all three types of bug reports when classified with Maxent using AW.  

One of the reasons that lead to the not so good performance in some cases when 

using HIW/HWB may be due to the fact that in some bug reports (e.g. MySQL) there is 

too much extraneous information such as the execution error results. These execution 

error results are certainly helpful for developers to investigate, but they have many 

repetitive words that are not helpful in identifying the type of bug report; unfortunately, 

the high frequency of these words makes them highly informative words to the classifier.   

The other likely reason is that the highly informative words do not occur 

predominantly in one class (configuration) versus the other class (non-configuration). So 

for example, even though words such as "set" or "value" do appear in the first 100 high 

informative words produced from chi-sq in MySQL, they are not used, or are on the 

lower level of the list by the classifiers as key features for identifying configuration bug 

reports. The reason they make it into the 100 high informative words is likely due to the 

reason they appear more frequently in some reports, which makes their count high. In 

NLTK, once a word is selected as a feature, it is treated equally as other features, 

regardless of how often it appears in some reports. This can be understood by the 

explanation of how to represent features in NLTK in section 3.2.1, "experiment design", 
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where all features selected have the value of "TRUE". With these selected features, it is 

up to the classifier to decide which features are the important ones for determining a 

report as configuration type or not. In the collected bug reports, it is likely that in the 

training bug reports, the words "set" and "value" do not appear in enough bug reports to 

merit being treated as important features, so they do not appear at all in Table 16. On the 

contrary, even though the word "preference" is not high on the list of chi-sq scores in 

Mozilla (as shown in Table 16), it becomes high on the list of features selected by 

classifiers as shown in Figure 9. This is likely because "preference" appears in the 

majority of configuration bug reports. Thus, even though there are not many words that 

we consider very informative in Table 16 for Mozilla, the result in Mozilla is good. Note 

that Table 16 lists the features ordered in their chi-sq scores, not the order from the 

classifiers’ informative feature list. Figure 9 shows the first few most informative features 

identified by NLTK NaiveBays for Mozilla bug reports. The ratios on the right indicate 

how likely a feature is to appear in configuration bug reports vs. in non-configuration bug 

reports. 

Table 16. Some Most Informative Words In Mozilla, Apache And MySQL Bug 
Reports That Are Used By Classifiers 

Mozilla Apache MySQL 
      crash                 8375.5         configuration    542.4         option                 253.4 
      build                 1675.2 module               200.3         global                  212.7 
      talkback             736.3         conf                    196.4         configuration     208.1 
      reproducible       676.0         directive            175.8         cnf                       171.2 

identifier            553.7         enable                 170.2         usr                       136.2 
      option                442.9         src                       112.3         ref                        93.4 
      agent                  376.5         xindice                99.0         connector             81.9 
      preference         357.3         ssl                        95.0         socket                  80.0 
      code                    272.8         configure            45.8         sock                      68.2 
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Figure 9. The first few most informative features identified by NLTK NaiveBayes in 

Mozilla bug reports. 

 
Table 17 shows the mean of configuration and non-configuration F-measures 

using the six classifiers. These numbers are the average of the F-measures in Tables 1-15. 

As we can see, performance does not change in ZeroR regardless of which method is 

used, and it is also the worst classifier since its non-configuration F-measures are all 0s. 

For the other five classifiers, with the exception of Logistic Regression, all other 

classifiers perform better using HIW/HWB compared to using AW. Maxent makes the 

greatest improvement when the feature extraction method is changed from AW to HIW, 

with non-configuration F-measure value doubled. The classifier that benefits the second 

most from using HIW/HWB is SVM, with an increase of 24% in configuration F-

measure. Logistic Regression actually does not perform as well when using HIW/HWB. 

However, it takes much longer time to finish when using AW rather than HIW/HWB. 

Overall, using HIW/HWB improves the performance of a classifier. 

Table 17 also reveals that most classifiers perform much better than ZeroR which 

is the baseline classifier used for comparison. The F-measure values of these classifiers, 
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with the exception of Maxent with AW, are mostly more than 0.8. This implies that the 

classification of bug reports as configuration or non-configuration is effective. 

Table 17. Average configuration and non-configuration F-measures of the five 
classifiers 

 Config. F-measure Nonconfig. F-measure 
 AW HIW HWB AW HIW HWB 

ZeroR 0.667 0.667 0.667 0 0 0 
Maxent 0.472 0.868 0.862 0.42 0.845 0.84 

NaiveBayes 0.827 0.857 0.85 0.714 0.837 0.823 
DecisionTree 0.806 0.818 0.817 0.816 0.824 0.824 

Logistic 0.888 0.795 0.852 0.893 0.796 0.854 
SVM 0.706 0.878 0.832 0.816 0.89 0.862 

When comparing the three software packages, Weka is the most consistent 

regardless of using AW or HIW/HWB, while NLTK is the most sensitive to these 

methods (AW, HIW, HWB). However, NLTK classifiers can perform very well when the 

right method (HIW/HWB) is used.  

Of all the classifiers (not considering ZeroR), Logistic Regression and Maxent 

appear to be the slowest classifiers, especially when using AW. Naïve Bayes is usually 

very fast, and its performance sometimes is better than Decision Tree. However, in some 

cases, it is moderately sensitive to the method used. SVM is also sensitive to the method 

used. 

The Figures A1-A15 in Appendix compare F-measures among the different 

classifiers. We can see how the F-measure values of the 100 classifications vary. In 

Tables 1-15, differences less than 0.1 (most of the time around 0.02 and 0.03) are 

considered statistically different. In the figures, the differences such as these are not so 

easily discernable. The most obvious differences between AW and HIW/HWB are NLTK 

classification results on Apache (Figures A1-A4, NLTK classifiers and some Sklearn 
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classifiers on Apache). When a classifier performs poorly, most of the time we can see 

that the data points vary widely. 

 

3.3.2 Identification of a configuration associated with a configuration bug report 

In section 3.3.1, in order to evaluate the performance of classification and how it 

can be generalized, 10 times 10-fold CV and a similar validation procedure are carried 

out. In this section, the steps in Figure 3 are followed. First, for each bug report corpus 

200 bug reports (100 configuration and 100 non-configuration) are used for training and 

the rest are used as unlabeled bug reports for prediction (testing). After a bug report is 

predicted to be configuration-related, it is used to identify its associated configurations. 

For configuration option identification, all the configuration bug reports that are 

used in testing are considered. There are 50 configuration bug reports used in testing in 

each project. In Table 18, the accuracy ratio is calculated by the number of correct 

identifications to the total number of configuration bug reports, which is 50. For Mozilla, 

those configuration bug reports are already identified on Mozilla configuration website 

(http://kb.mozillazine.org/Category:Preferences), so that information is used as ground 

truth to test the accuracy of the configuration identification. For bug reports from the 

other two projects, the association of a bug report with a configuration or a few 

configurations is manually identified and is verified to be the correct identification. 

Since a bug report could be associated with more than one configuration, the 

configuration identification tool will present the first 10 most likely configurations. This 

helps in the case that when it is not possible to identify the exact configuration, it is still 

possible to narrow down the number of configurations.  This will help a developer who 
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works on the bug since he/she still gets relevant bug reports to consider rather than none 

at all. If the already known to be related configuration occurs in the first 10 listed 

configurations, it is considered a correct identification in this study.  Although this type 

of identification is loose, it is found that the tool developed in this study can identify the 

correct configurations in the top five most of the time. In fact, it is not uncommon to see 

that it finds the correct configuration as the first one on the list. 

As discussed in section 2.3.2.2, Term Frequency-Inverse Document Frequency 

(TFIDF) is used to measure the importance of a term in a document. This tool makes use 

of TFIDF to calculate the similarity of a bug report and the configurations. The 

configurations are ordered according to similarity score from highest to lowest.  The 

similarity is defined as: 

𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙𝑠𝑠𝑖𝑖𝑓𝑓𝑦𝑦(𝑙𝑙,𝑖𝑖) =  �𝑓𝑓𝑓𝑓
𝑡𝑡∈𝑏𝑏

− 𝑖𝑖𝑖𝑖𝑓𝑓𝑡𝑡,𝑑𝑑 

where b is the bug report and d is the configuration. 

Table 18 is an example of the tf-idf calculations the tool makes in identifying the 

configuration associated with the bug report in Figure 2. In this example, the 

configuration is browser.urlbar.filter.javascript. Its similarity to the example bug report 

breaks down to the individual tf-idf scores of the five terms. Adding them together, we 

get 0.16+0.18+0.15+0.14=0.64 which turns out to be the highest score of all other 

configurations. Thus, the tool correctly identifies this configuration as the number one on 

the list of all possible configurations associated with the example bug report. 
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Table 18. Ranking terms in the example configuration option 

term tf                          df                           idf tf-idf 
browser 1                           28                         0.16 0.16 

url 1                           31                         0.18 0.18 

bar 0                            -                             - - 

filter 1                           18                         0.15 0.15 

javascript 1                           22                         0.14 0.14 

… …                         …                          … … 

 

Results in Table 19 show that overall, this configuration identification tool is 

effective in finding out which configuration is associated with the configuration bug 

report under investigation. This is particularly true in Mozilla, with a high value of 0.92. 

The tool performs worst in MySQL. This is mainly due to the fact that MySQl 

configurations have irregular number of words in the configurations. For example, it has 

configurations: "ssl", "ssl_accepts", "ssl_accept_renegotiates" in server configurations. 

These configurations vary in size significantly. In these cases, our tool tends to choose 

the longer configuration if the words "accept" and "renegotiate" also appear in the bug 

report. In the collected bug reports, there are a few cases that the bug reports are 

associated with "ssl", and our tool identified the longer ones. Since an identification is 

considered to be correct only if the correct configuration is in the first 10 of the identified 

ones, those are all considered incorrect identifications. Correct identification of such 

configurations is a direction for future improvement of the tool, where it should not only 

consider a bag of words but may also consider semantic of the text. 

Table 19. Accuracy of relating a configuration bug report with a configuration 
 Mozilla Apache MySQL 

Accuracy 0.92 0.88 0.74 
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Chapter 4  

Conclusions and Future Work 

This chapter draws conclusions based on the results and analyses discussed in 

Chapter 3 and outlines future work to improve classification and configuration 

identification performances. 

4.1 Conclusions 

In this study, a tool is developed that can classify configuration bug reports and 

extract configuration options. It involves two steps. The first step trains classification 

models on the labeled bug reports to predict a given unlabeled bug report as being either 

a configuration or non-configuration bug report. The second step employs natural 

language processing and information retrieval to extract configuration options from the 

identified configuration bug reports. A total of 900 bug reports from three open source 

projects are used for the study. The results show that the approach adopted in the study 

discriminates configuration bug reports from non-configuration bug reports with high 

accuracy, and that it is effective at extracting configuration options.  

The study also compares three machine learning software packages in classifying 

bug reports. NLTK’s classifiers are more sensitive to the different methods used to 

extract features; using high information words and bigrams as features works better in 

most NLTK classifiers used in this study. Sklearn classifiers are moderately affected by 

the methods used; however, its SVM classifier performs much better with HIW/HWB 

than AW. Weka classifiers do not show much difference using AW or HIW/HWB; in fact, 
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its Logistic Regression classifier works much better with AW but takes much longer time 

to complete. 

The classifiers are also compared. ZeroR has no prediction power and is used as 

baseline classifier. Maxent is very sensitive to the method used; when using HIW/HWB it 

performs its best and the time spent in classification is much shorter than using AW. 

SVM is also sensitive to the methods used, especially the one implemented in Sklearn. 

Naïve Bayes is somewhat affected by the methods used, in particular the NLTK Naïve 

Bayes; but generally its performance is quite good, sometimes better than Decision Tree 

and the time spent is generally shorter than Decision Tree. Logistic Regression generally 

performs best in terms of the performance metric numbers, but it is rather slow. In 

general, all the classifiers perform much better than the baseline ZeroR. Exceptions are in 

Maxent and NaiveBayes when they are used to predict Mozilla bug reports using AW. In 

that case, their prediction ability seems to deteriorate to that of ZeroR, blindly labeling all 

bug reports to be one type. 

4.2 Future Work 

The current research shows promising results in using NLP and machine learning 

techniques to characterize configuration bug reports. However, there are improvements to 

make to the current characterization framework, and this will be the future work. 

We saw that on Apache bug reports, using HIW/HWB improved the 

performances of the classifiers significantly, especially the NLTK classifiers, while there 

was not much difference using AW or HIW/HWB on MySQL bug reports. Study of the 

bug reports revealed that MySQL bug reports contained much information that was 
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irrelevant to the type of the bug reports; however, the irrelevant words occurred many 

times, which made them appear to be important and thus they entered into the high 

information words list. This irrelevant information is considered one of the possible 

reasons that lead to the little to no improvement in classification using HIW/HWB. Thus, 

one part of the future work will be to clean the bug reports first before performing any of 

the operations in the current research. 

In this research, for each open source project, only 135 bug reports of each type 

are used for training and 15 bug reports of each type are used for testing in the 10-fold 

cross validation, and in the 20x5 training and testing validation, 120 bug reports of each 

type are used for training and 30 bug reports of each type are used for testing. Although 

these numbers are considered enough for machine learning [8], generally the more data 

there are the better. In addition, considering the potential great differences in words and 

phrases used in one bug report as compared to those in another, using more bug reports 

for training and testing will capture more information, improve the classifiers’ 

performance and make the testing results more convincing. This will be another part of 

the future research work. To make this part of the work more conclusive, it may need to 

study how the classifiers’ performance metrics vary as the numbers of the bug reports for 

training and testing are increased. It is possible there is a maximum in the number of bug 

reports beyond which further increase in bug reports does not improve classifiers’ 

performance much. If that number can be found, then there is no need to look for more 

bug reports to improve classification performance, and we are confident that the results 

we have reflect the true performance of the classifiers. 
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In addition to varying the number of the bug reports, it is also necessary to include 

the bug reports from more software projects, both open software and proprietary, to make 

the results generalizable. 

The configuration identification part of the current research has its limitations. As 

discussed in 3.3.2, for configurations with varying words, the configuration identification 

tool tends to choose the configuration with more words, even though the shorter one is 

the correct configuration. Improvement on this may involve considering the sematic of 

the bug reports, synonyms and using n-gram. The n in n-gram is greater than two since 

unigram and bigram have already been used. 

The last part of the future work is to combine the currently discrete parts of the 

code into a fully integrated software piece. These parts include the code to generate pure 

text from the bug reports URLs, the code to perform classification, and the code to 

calculate Tfidf values of the configuration bug reports and output the most closely 

associated configurations, etc. It would be desirable to include Weka classifiers in the 

python code rather than in a separate Java code. This involves fully understanding the 

current difficulties in calling Weka classifiers from the python code and finding an 

alternative solution. To make the integrated tool more user friendly, it can provide the 

user with the option to choose which classifier(s) he/she wants to use for classification. 
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Appendix 

Figures that compare the configuration and non-configuration F-measure between 

the classifiers 

 
(a) Configuration F-measure 

 

 
 

(b) Non-configuration F-measure 
Figure A1. Apache F-measure comparison with 10x10 CV using NLTK. 
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(a) Configuration F-measure 

 

 
(b) Non-configuration F-measure 

 
Figure A2. Apache F-measure comparison with 10x10 using Sklearn 
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(a) Configuration F-measure 

 

 
(b) Non-configuration F-measure 

 
Figure A3. Apache F-measurement comparison with 20x5 training-and-testing using 

NLTK 
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(a) Configuration F-measure 

 

 
(b) Non-configuration F-measure 

 
Figure A4. Apache F-measurement comparison with 20x5 training-and-testing using 

Sklearn. 
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(a) Configuration F-measure 
 

 
(b) Non-configuration F-measure 

 
Figure A5. Apache F-measure comparison with 10x10 CV using Weka. 

 
 



www.manaraa.com

 

65 
 

 
(a) Configuration F-measure 

 

Non-configuration F-measure 
 

Figure A6. Mozilla F-measure comparison with 10x10 CV using NLTK 
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(a) Configuration F-measure 

(b) Non-configuration F-measure 

 
Figure A7. Mozilla non-configuration F-measure comparison with 10x10 CV using 

Sklearn. 
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(a) Configuration F-measure 
 
 

 
(b) Non-configuration F-measure 

 
Figure A8. Mozilla F-measure comparison with 20x5 training-and-testing using 

NLTK. 
 



www.manaraa.com

 

68 
 

 

(a) Configuration F-measure 

 

(b) Non-configuration F-measure 

 
Figure A9. Mozilla F-measure comparison with 20x5 training-and-testing using 

Sklearn. 
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(a) Configuration F-measure 

 

(b) Non-configuration F-measure 

 
Figure A10. Mozilla F-measure comparison with 10x10 CV using Weka. 
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(a) Configuration F-measure 

 

(b) Non-configuration F-measure 

 
Figure A11. MySQL F-measure comparison with 10x10 CV using NLTK. 
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(a) Configuration F-measure 

 

(b) Non-configuration F-measure 

 
Figure A12. MySQL F-measure comparison with 10x10 CV using Sklearn. 
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(a) Configuration F-measure 

. 

(b) Non-configuration F-measure 

 
Figure A13. MySQL F-measurement comparison with 20x5 training-and-testing 

using NLTK 
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(a) Configuration F-measure 

 

(b) Non-configuration F-measure 

 
Figure A14. MySQL F-measurement comparison with 20x5 training-and-testing 

using Sklearn. 
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(a) Configuration F-measure 

 

(b) Non-configuration F-measure 

 
Figure A15. MySQL F-measure comparison with 10x10 CV using Weka. 
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